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Abstract

The multi-label problem is of fundamental importance to
computer vision, yet finding global minima of the associ-
ated energies is very hard and usually impossible in prac-
tice. Recently, progress has been made using continuous
formulations of the multi-label problem and solving a con-
vex relaxation globally, thereby getting a solution with opti-
mality bounds. In this work, we develop a novel framework
for continuous convex relaxations, where the label space is
a continuous product space. In this setting, we can combine
the memory efficient product relaxation of [9] with the much
tighter relaxation of [5], which leads to solutions closer to
the global optimum. Furthermore, the new setting allows us
to formulate more general continuous regularizers, which
can be freely combined in the different label dimensions. We
also improve upon the relaxation of the products in the data
term of [9], which removes the need for artificial smoothing
and allows the use of exact solvers.

1. Introduction

Labeling problems in computer vision. Recently, there
has been a surge of research activity in convex relaxation
techniques for energy minimization in computer vision.
Particular efforts were directed towards multilabel prob-
lems, as they lie at the heart of fundamental problems like
segmentation [15], stereo [17], 3D reconstruction [7] and
optic flow [9].

In multilabel problems, we are looking for a pointwise
labeling u : Ω → Γ of a domain Ω ⊂ Rn which is opti-
mal in the following sense. Assigning the label γ ∈ Γ to a
point x incurs the cost c(x, γ) ∈ R. The cost usually de-
notes how well the labeling fits the observed data. It can
be an arbitrarily complex function, derived from statistical
models or local matching scores. Aside from minimizing
the local costs, we want the optimal assignment to exhibit
a certain regularity. This requirement is encoded in a prior
term J(u). The prior represents our knowledge about which
label configurations are more likely, and typically enforces
spacial coherence. The solution to the labeling problem is
the minimizer of the sum of the local costs and the regular-

Figure 1: For multilabel problems like optical flow estima-
tion we propose a novel relaxation which is tighter and more
general than previous ones. In contrast to [14, 9], we can
use an exact instead of approximated relaxation of the trun-
cated linear regularizer.

ity prior,

argmin
u:Ω→Γ

J(u) +

∫
Ω

c(x, u(x)) dx. (1)

Unfortunately, finding a global minimum of non-convex
energies is a very hard problem, and in most cases impos-
sible in practice. In some cases, good results may be ob-
tained by local minimization, starting from a good initial-
ization. Yet, such methods cannot guarantee any form of
quality of the result - it could be arbitrarily bad. Therefore,
the ultimate goal is to find methods which at least get within
provable distance to the global optimum.

Optimal and approximate solutions. True global solu-
tions to (1) can only be found in rare special cases. If the la-
bel space is binary and the regularizer submodular, a global
minimum can be computed with a minimum cut [10]. In
the continuous setting, the two-label segmentation problem
with length regularity can be solved by relaxation to a con-
vex problem and subsequent thresholding [15]. A technique
called functional lifting was introduced in [17] to solve the
special case of the multilabel problem with convex interac-
tion terms and a linearly ordered set of labels. The idea is
that the original problem can be reformulated as an equiva-
lent higher-dimensional problem which is convex. It is rem-
iniscent of a similar construction [11] for the discrete case,
where a global minimizer for these kinds of problems was
computed as a cut in a multi-layered graph.

However, for general non-convex regularizers like the
Potts distance, the resulting combinatorial problem is NP-
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hard [3]. In the discrete setting, one can approximate a solu-
tion for example by solving a sequence of binary problems
(α-expansions) [3], linear programming relaxations [18], or
quadratic pseudo-boolean optimization [13]. The problem
of large label spaces is also tackled in [8], where the authors
compute optical flow from an MRF labeling problem using
a lower dimensional parametric description for the displace-
ments. In this paper, we work in the fully continuous set-
ting, avoiding typical problems of graph-based discretiza-
tion like metrication errors [12].

Continuous convex relaxations. Continuous approaches
deal with the multi-label problem by convex relaxation. The
original non-convex energy is replaced with a convex lower
bound, which can be minimized globally. We automati-
cally get a bound on the solution and know how far we
are from the global optimum. How good the bound is de-
pends on the tightness of the relaxation, i.e. how close the
new energy is to the old one. While it sometimes can be
possible to even achieve global optimality using this class
of methods [15, 17], there is no relaxation known which
leads to globally optimal solutions of the general prob-
lem. Relaxations of different tightness have been proposed
in [14, 5, 19]. They all have in common that they are very
memory intensive if the number of labels becomes larger,
which makes it impossible to use them for scenarios with
thousands of labels, like for example optic flow.

Contributions. In [9], the authors reduced memory re-
quirements and made it possible to deal with a very large
number of labels, as long as the space of labels carries a
product structure. We improve upon their construction in
two significant ways. First, their regularizer is based on the
relaxation in [14] for multilabel problems with a discrete
set of labels, which is known to be less tight than the re-
laxation introduced in [5] for continuous label spaces. Sec-
ond, their relaxation of the data term is suboptimal in that
it introduces unwanted trivial solutions when relaxing from
binary to continuous labels, which have to be avoided by an
additional smoothing degrading the quality of solutions.

Our contribution is to propose a general framework for
convex relaxations of multilabel problems, which is based
on a continuous, multi-dimensional label space. Regard-
ing the regularization, we are then able to combine the ad-
vantages of the efficient multi-dimensional relaxation of [9]
with the tight relaxation of [5]. We show that previous
relaxations appear as special cases of our framework. In
addition, we can formulate more general regularizers on
multi-dimensional label spaces and thus solve a more gen-
eral class of problems efficiently. Furthermore, we propose
a novel convex relaxation of the data term which is a sub-
stantial improvement to [9]. It is not only much tighter,
but also avoids the need for an additional approximation as
in [9]. Overall, the new framework yields solutions which
are provably closer to the global optimum.

2. Multidimensional Labeling Problems
In this work, we propose the setting of a continuous,

multi-dimensional label space. In this way, we are able to
combine the advantages of the efficient multi-dimensional
relaxation of [9] with the tight relaxation of [5].

Let the space of labels be denoted by Γ. We assume that
it has the structure of a continuous product space,

Γ = Λ1 × ...× Λd,

where the factors Λk are intervals in R. We are looking for
an optimal labeling u : Ω → Γ of the domain Ω ⊂ Rn.
The motivation for writing the space of labels as a product
has been detailed in [9]. In particular, the memory require-
ments are reduced by orders of magnitude, which makes the
method applicable to problems with a very large number of
labels.

Regularizer. We write the components of u as
(u1, . . . , ud), and consider a general separable regu-
larizer

J(u) =

d∑
k=1

Jk(uk). (2)

This way, each Jk acts on the components of u indepen-
dently.

In order to define the regularizer, we require some tech-
nical preliminaries. Recall [2] that for functions uk in the
space SBV(Ω) of special functions of bounded variation,
the distributional derivative Duk of uk can be decomposed
as

Duk = ∇uk dx+ ((uk)+ − (uk)−)νuk dH
n−1xSuk

into a differentiable part and a jump part, see Figure 2. Here,
Suk is the (n − 1)-dimensional jump set of uk where the
values jump from (uk)− to (uk)+, νuk is the normal to
Suk from the (uk)− to the (uk)+ side, and ∇uk is the ap-
proximate gradient of uk. Hn−1xSuk denotes the (n− 1)-
dimensional Hausdorff measure restricted to the set Suk .
We refer to [2] for a comprehensive introduction to func-
tions of bounded variation.

After these preliminary remarks, we are now in a posi-
tion to define the requirements of a regularizer for the label-
ing functions uk.

Definition. In our framework, we consider regularizers
for problem (1) of the form (2), with

Jk(uk) =

∫
Ω\S

uk

hk(x, uk(x),∇uk(x))

+

∫
S
uk

dk
(
s, (uk)−(s), (uk)+(s)

)
, (3)
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Figure 2: A special function of bounded variation u has an
approximate gradient everywhere except on a nullset Su,
where the values jump from u− to u+. The normal νu de-
notes the direction of the jump from small to large values.

with functions hk : Ω × Λk × Rn → R and dk : Ω ×
Λk × Λk → R. The functions hk and dk have to satisfy the
following conditions:

1. hk(x, λ, p) is convex in p for fixed x, λ.

2. dk(x, ·, ·) is a metric on Λk for fixed x.

The interesting task, of course, is to identify suitable
choices of hk and dk, and to interpret what the choice means
in practice. We will turn to this in section 4. Before we can
explore the relationships, however, we need to introduce a
convex relaxation of the regularizer in the next section.

3. Convex Relaxation and Discretization
Convex representation of the regularizer. In order to ar-
rive at a convex representation of the regularizer, we formu-
late it in terms of new unknowns vk defined as

vk(x, λ) := δ(uk(x)− λ). (4)

Note that the new unknowns are distributions on the higher
dimensional space Ω × Λk, which however will reduce to
regular functions after discretization. They are a generaliza-
tion of the label indicator functions in [9, 14] to the contin-
uous label space, in particular they satisfy the relations∫

Λk

vk(x, λ) dλ = 1,

∫
Λk

λ vk(x, λ) dλ = uk(x). (5)

Intuitively, this means that for each fixed x ∈ Ω, vk(x, ·) has
a total mass of 1 and is concentrated on the point uk(x). The
functional Jk can then be represented in the following form,
which is an application of the calibration method discussed
in [1]. We refer to their work for an in-depth introduction to
this technique.

Theorem 3.1. Let Jk be of the form (3), and the indicator
distributions vk defined as in (4). Then

Jk(uk) = sup
(p,b)∈Ck

∫
Ω×Λk

(−div(p)− b) vk d(x, λ), (6)

with the convex set

Ck =
{

(p, b) : Ω× Λk → Rn × R

such that for all x ∈ Ω and λ, γ ∈ Λk,

b(x, λ) ≥ h∗k
(
x, λ, ∂λp(x, λ)

)
,

|p(x, λ)− p(x, γ)| ≤ dk(x, λ, γ)
}
.

(7)

Above, h∗k(x, λ, q) denotes the convex conjugate of
hk(x, λ, p) with respect to p.

Proof. See appendix.

Discretization and convex representation of the data
term. In practice, the label space Λk needs to be dis-
cretized at Nk = |Λk| levels for each k. This means that
instead of the indicator distributions vk(x, λ), we end up
with a finite number of indicator functions vkλ for each dis-
crete label. Optimization in v takes thus place over the set

D =

{
(vk)1..d

∣∣ vkλ ∈ SBV(Ω, {0, 1}) :
∑
λ∈Λk

vkλ = 1

}
.

(8)
which is non-convex, since each vkλ must be binary. Ulti-
mately, we wish to replace D with its convex hull co(D),
which consists of functions taking values in the full
range [0, 1]. Similarly to D, the discrete version of the set
Ck in (7) consists of tuples (pλ, bλ)λ∈Λk of functions. Us-
ing the relationships (5) to transform the data term of the
multilabel problem (1), we see that it is pointwise of the
form

Edata(v) =
∑
γ∈Γ

cγ v
1
γ1 · ... · v

d
γd

(9)

with cγ(x) := c(x, γ), which is non-convex due to the mul-
tiplication terms. In [9], the authors convexified the data
term by replacing each of the monomials by its convex en-
velope. In the two-label case for example, this leads to the
relaxation

Rprevious(v) =
∑
γ∈Γ

cγ max(0, v1
γ1 + v2

γ2 − 1). (10)

However, this approach has the drawback that it introduces
the trivial solution vkγ = 1/Nk as the point-wise minimizer
of the data term with value Rprevious(v) = 0 when mov-
ing from D to co(D), i.e. from binary to continuous v.
In [9], this problem was avoided by an additional smooth-
ing, which increases the energy of the trivial solution and
thus rules it out. Unfortunately, the smoothing leads to non-
exact solutions and is thus not ideal. In this work we there-
fore propose a different relaxation of the data term, which
does not suffer from this problem. We propose the relax-
ation

Rdata(v) := sup
q∈Q

∑
λ∈Λ1

q1
λv

1
λ + . . .+

∑
λ∈Λd

qdλv
d
λ (11)



of Edata(v), which is to be understood pointwise for
each x ∈ Ω. The additional dual variables q = (qk)k=1..d

range over the convex set

Q :=
{

(qk)k=1..d | qk : Λk → R s.t. for all γ ∈ Γ,

q1
γ1 + . . .+ qdγd ≤ cγ

}
.

(12)

One can easily see that the relaxation coincides with the
original energy for binary functions. In addition, one can
prove the following theorem, which shows that the relax-
ation of the data term has the correct pointwise minimiz-
ers, in contrast to the one proposed in [9]. This means that
no smoothing is necessary and an exact minimization algo-
rithm can be employed to obtain solutions. It is one of the
key theoretical contributions of this paper.

Theorem 3.2. Let v̂ ∈ D be a binary (pointwise) minimizer
of Edata(v). Then v̂ is also a minimizer of

min
v∈co(D)

Rdata(v). (13)

In particular, Edata(v̂) = Rdata(v̂) = infγ∈Γ cγ .

Proof. See appendix.

Final saddle point problem. Summarizing, in order to
transform the multilabel problem into the final form which
we are going to solve, we formulate it in terms of the in-
dicator functions vkλ and plug in the representation (6) for
the regularizer and use the relaxation (11) of the data term.
Using the relationships (5) to transform the data term, we
end up with the following saddle point problem:

min
(vkλ)∈co(D)

max
(pk,bk)∈Ck∫

Ω

[
Rdata(v) +

∑
k,λ∈Λk

(
− div(pkλ)− bkλ

)
vkλ

]
dx.

(14)

Note that we performed the relaxation to the convex hull
co(D), which means we optimize over non-binary func-
tions taking values between 0 and 1. Thus, the problem
is now fully convex, and can be solved with a first order
primal-dual algorithm, as detailed in section 5 later. If the
minimizer already lies in D, we have found the global op-
timum, otherwise we have to project the result from co(D)
back to the smaller set D and usually find a non-optimal
solution. However, we can compute an optimality bound to
estimate how far we are from the global optimum by com-
paring the global optimum of the convex functional to the
projected solution in D.

4. Multilabel Regularizers
In this section, we will explore suitable choices of the

regularizer, and how they fit within the proposed frame-

work. In particular, we will see how our model can be spe-
cialized to the previous work in [14, 9], but we will also
discuss additional regularizers which become possible.

Previous approaches as special cases. We first consider
the special case of a piecewise constant labeling. This
means that the approximate gradient ∇uk is constant zero
for all k. Then the regularizer Jk penalizes only the jumps
of u and reduces to

Jk(uk) =

∫
S
uk

dk
(
(uk)−, (uk)+

)
. (15)

Applying theorem 3.1 leads to a convex representation of
Jk, which we formulate in the following proposition in its
discretized form.

Proposition 4.1. The convex relaxation of (15) is given by

Jk(uk) = sup
p∈Ck

∑
λ∈Λk

∫
Ω

pλ(x)∇ukλ(x) (16)

with

Ck =
{
p : Ω× Λk → Rn | |pλ(x)− pγ(x)| ≤ dk(λ, γ)

}
.

In the following we show that the label metrications pro-
posed in [14] for one-dimensional and in [9] for multi-
dimensional label spaces appear as special cases of our
framework. Assume that the metric dk has an Euclidean
representation, which means that each label λ ∈ Λk is rep-
resented by a vector aλ ∈ RNr with some Nr ≥ 1 and that
with these vectors dk(λ, γ) = |aλ − aγ |.

Proposition 4.2. Let the matrix A consist of the columns
aλ. Then

Jk(uk) ≥ TVv(Au
k), (17)

where

TVv(û) :=

∫
Ω

√√√√ Nr∑
i=1

|∇ûi|2

denotes the vectorial total variation for functions taking
values in RNr . Equality holds if and only if uk is binary.

Proof. The claim follows from our general formulation (16)
by choosing a special form of the dual variables p together
with additional relaxations of the equations in Ck, see ap-
pendix.

The right hand side of inequality (17) is exactly the reg-
ularizer used in [9, 14]. This implies that for binary func-
tions, the regularizers coincide, which can already be seen
from representation (15), see [14]. However, if we perform
the relaxation to functions taking values between 0 and 1,
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Figure 3: Optical flow fields with 32× 32 labels computed on an image with resolution 320× 240. With the new relaxation
of the regularizers, we achieve optimality bounds which are on average three times lower than with previous relaxations
from [9, 14], Here, we used total variation and in both cases the proposed data term relaxation (11). Since the scaling of
the regularity term is not directly comparable, we chose optimal parameters for both algorithms manually. The large time
difference results from a narrow constraint on the time step for [14].

inequality (17) implies that our relaxation is more tight,
leading to solutions closer to the global optimum.

In addition, our method allows for much more com-
plex regularizers allowing also a smooth variation of the
labels which is not possible with the piecewise constant ap-
proach of [14, 9] which uses vectorial total variation. For
instance, our formulation is capable of representing more
sophisticated regularizers such as Huber-TV and the piece-
wise smooth Mumford-Shah functional, as we will show
in the following paragraphs. For the regularizers presented
in the remainder of this section, relaxations have previously
been proposed for the case of a one-dimensional label space
in [5, 16, 17]. However, our framework is more general and
allows to combine them freely in the different label dimen-
sions.
Huber-TV. The TV regularization is known to produce
staircasing effects in the reconstruction, i.e. the solution
will be piecewise constant. While this is natural in case of a
discrete label space, for continuous label spaces it impedes
smooth variations of the solution. A remedy for this is re-
placing the norm |∇u| of the gradient by the Huber function

|∇u|α :=

{
1

2α |∇u|
2, if |∇u| ≤ α

|∇u| − α
2 , else.

(18)

which smoothes out the kink at the origin [17]. The Huber-
TV regularizer is then defined by

Jk(uk) =

∫
Ω

|∇uk(x)|α.

Theorem (3.1) gives a convex representation for Jk. The
constraint set in (7) is found to be

Ck =
{

(p, b) : Ω× Λk → Rn × R |

bλ ≥
α

2
|∂λpλ|2, |∂λpλ| ≤ 1

}
.

Piecewise smooth Mumford-Shah. The celebrated
Mumford-Shah regularizer [1, 16]

Jk(uk) =

∫
Ω\S

uk

1

2α
|∇u|2 + ν|Suk |

allows to estimate a denoised image u which is piecewise
smooth. Parameter ν can be used to easily control the total
length of the jump set Suk . Bigger values of ν lead to a
smaller jump set, i.e. the solution is smooth on wider subre-
gions of Ω. The constraint set in the convex representation
of theorem 3.1 becomes

Ck =
{

(p, b) : Ω× Λk → Rn × R |

bλ ≥
α

2
|∂λpλ|2, |pλ − pγ | ≤ ν

}
.

The limiting case α = 0 corresponds to the piecewise con-
stant Mumford-Shah regularizer.

Truncated linear. For many applications, it is useful to
consider two function values a and b just as “different” if
their difference |a − b| is big enough, i.e. jumps from a to
b are penalized by a constant t regardless of how big |b −
a| is, if |b − a| is greater than a certain threshold. Using
linear penalization for small values this leads to the robust
truncated linear regularizer [5]

Jk(uk) =

∫
Ω\S

uk

|∇u|+
∫
S
uk

min
(
t, |(uk)+ − (uk)−|

)
.

The constraint set for this case is

Ck =
{

(p, b) : Ω× Λk → Rn × R |

|∂λpλ| ≤ 1, |pλ − pγ | ≤ t, b = 0
}
.

The second constraint must be imposed only for λ, γ ∈ Λk
with |λ − γ| ≥ t, since otherwise it is already satisfied by
the first constraint.
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Figure 4: The algorithm allows to both recover the unknown standard deviation σ of the noise as well as the intensity of
a denoised image by solving a single optimization problem. Ground truth: Within rectangle Gaussian noise with standard
deviation σ = 0.25, outside σ = 0.02; image intensity within ellipsoid u = 0.7, outside u = 0.3. Image resolution is
256× 256 using 32× 32 labels. Computation time is 10 minutes.

5. Implementation
We minimize the energy (14) with a recent general fast

primal-dual algorithm in [6]. It is essentially a gradient de-
scent in v and gradient ascent in p and b, with a subsequent
application of proximation operators which act as general-
ized reprojections. The proximation for the primal variable
v consists of solving

min
v

∑
k,λ∈Λk

(vkλ − fkλ )2

2θ
+Rdata(v) (19)

for each x ∈ Ω with some fixed f : Λk → R and θ > 0.
Here, Rdata(v) is the data term relaxation in (11). This is a
pointwise convex problem which can be solved in parallel
for each x ∈ Ω, again using the algorithm [6]. To make
sure that the dual variables q ofRdata lie in the constraint set
(12), we add the Lagrange multiplier terms

sup
µγ≥0

∑
γ∈Γ

µγ(q1
γ1 + . . .+ qdγd − cγ)

to the energy and optimize (19) over v and µ. Note that
for each x ∈ Ω we thus need O(N1 · · ·Nd) memory to
solve (19), which at first seems to contradict our statement
to substantially reduce the overall memory requirements to
O((N1 + . . . + Nd)|Ω|). However, the problems (19) are
independend of each other for different x ∈ Ω and can
be solved in chunks of O

(
(N1 + . . .+Nd)|Ω|/N1 · · ·Nd

)
points x in parallel.

The proximation for the dual variables is the projection
onto the constraint set Ck. We implement it by introduc-
ing new dual variables dλ = ∂λpλ or dλ,γ = pλ − pγ ,
respectively, depending on the kind of constraints in Ck,
and adding the corresponding Lagrange multiplier terms
infη η · (∂λpλ − dλ) respectively infη η · (pλ − pγ − dλ,γ)
to the energy to enforce these equalities. The optimization
(14) is then performed over v, p, b and η : Ω→ Rn.

6. Experiments

We demonstrate the correctness and usability of our
method on two examples. The first example shows com-
putation of optic flow fields, the second example a denois-
ing scheme where regularity is adapted optimally over the
image. Several different regularizers are used in the exam-
ples. In the cases where the regularizer can be simulated
with the previous relaxation [9], we compared the result-
ing optimality bounds. On average, our bounds were ap-
proximately three times better (3 − 5% with the proposed
framework compared to 10− 15% with the previous relax-
ation). We used a parallel CUDA implementation on an
nVidia GTX 480 GPU.

Optical flow. We compute optic flow between two color
input images I0, I1 : Ω → R3 taken at two different
time instants. The space of labels is two-dimensional, with
Λ1 = Λ2 denoting the possible components of flow vec-
tors in x and y-direction. Details on the data term can be
found in [9]. Both directions are regularized either with
total variation in figure 3, or a truncated linear penalizer
in figure 1. Note that we can provide a tight relaxation of
the exact penalizer, which was only coarsely approximated
in the previous approaches [9, 14], while we can provide a
tight relaxation of the exact penalizer.

Adaptive denoising. As a novel application of a multi-
dimensional label space, we present adaptive denoising,
where we jointly estimate a noise level and a denoised im-
age by solving a single minimization problem. Note that
here we require the continuous label space to represent the
image intensity range. The Mumford-Shah energy can be
interpreted as a denoising model which yields the maxi-
mum a posteriori estimate for the original image under the
assumption that the input image f was distorted with Gaus-
sian noise of standard deviation σ. If this standard devia-
tion is itself viewed as an unknown which varies over the



image, the label space becomes two-dimensional, with one
dimension representing the unknown intensity u of the orig-
inal image, the second dimension representing the unknown
standard deviation σ of the noise. The data term of the en-
ergy can then be written as [4]∫

Ω

(u− f)2

2σ2
+

1

2
log(2πσ2) dx. (20)

Results of the optimization can be observed in figure 4. For
the regularizer, we used piecewise constant Mumford-Shah
for both σ and u.

7. Conclusion
We proposed a general framework for convex relax-

ations of multilabel problems based on a continuous, multi-
dimensional label space. The first main contribution is to
improve upon the regularization by combining the advan-
tages of the efficient multi-dimensional relaxation presented
in [9] with the tight relaxation of [5]. The second main con-
tribution is to introduce a much tighter relaxation for the
products in the data term, which avoids the problem of a
trivial pointwise solution without the need for additional
smoothing as in [9]. In this way, we arrive at solutions
which are provably closer to the global optimum. In addi-
tion, the framework allows to formulate more general regu-
larizers on multi-dimensional label spaces and thus solve a
more general class of problems efficiently. For example, we
can explicitly encourage the solution to be smooth in certain
regions, and can represent Huber-TV and truncated linear
regularization by an exact and tight relaxation. In contrast
to previous work, the regularizers can be arbitrarily mixed,
in the sense that each dimension of the label space can have
its own type of regularity.

Appendix
Proof of Theorem 3.1. We use the graph function 1uk :
Ω× Λk → R of uk, defined as

1uk(x, λ) =

{
1, if λ < uk(x)

0, else.

Under the assumptions on hk and dk in the definition of
Jk in section 2, the functional Jk can be represented in the
following way [1]:

Jk(uk) = sup
φ∈K

∫
Ω×Λk

φx · ∇x(1uk) + φλ ∂λ(1uk) (21)

with the convex set

K =
{
φ = (φx, φλ) : Ω× Λk → Rn × R |

φλ(x, λ) ≥ h∗k(x, λ, φx(x, λ)),∣∣∣ ∫ γ

λ

φx(x, s) ds
∣∣∣ ≤ dk(x, λ, γ)

}
.

(22)

Representation (6) follows from (21) by noting that

1uk(x, λ) =

∫ λmax

λ

vk(x, s) ds (23)

and defining p : Ω× Λk → Rn and b : Ω× Λk → R by

p(x, λ) :=

∫ λ

λmin

φx(x, s) ds, b(x, λ) := φλ(x, λ).

Specifically, the second addend in (21) converts to

φλ ∂λ(1uk) = −b vk. (24)

Furthermore, from the definition of p it follows φx = ∂λp
and we obtain using the relation (23):∫

Ω×Λk

φx · ∇x(1uk)

=

∫
Ω

∫
Λk

∂λp(x, λ) ·
(∫ λmax

λ

∇vk(x, s) ds
)

dλ dx

=

∫
Ω

∫
Λk

p(x, λ) · ∇vk(x, λ) dλ dx.

(25)
Here, we applied integration by parts together with
p(x, λmin) = 0. The claim in the proposition now follows
directly from (21) using (24) and (25).

Proof of Theorem 3.2. Let v be arbitrary, ĉ = infγ cγ and
set qiλ := ĉ/d. Then

d∑
i=1

∑
λ∈Λi

qiλv
i
λ =

d∑
i=1

ĉ

d

∑
λ∈Λi

viλ = d
ĉ

d
= ĉ, (26)

and
∑
i q
i
γi = ĉ ≤ cγ for all γ, so q ∈ Q. This shows that

R(v) ≥ ĉ. Conversely, let γ̂ be the label indicated by v̂, i.e.
where all v̂γ̂i = 1. Then E(v̂) = ĉ and for all q ∈ Ĉ,

d∑
i=1

∑
λ∈Λi

qiλv
i
λ =

d∑
i=1

qiγ̂iv
i
γ̂i =

d∑
i=1

qiγ̂i ≤ ĉ. (27)

This shows R(v̂) = ĉ and completes the proof.

Proof of Proposition 4.1. We can enforce a piecewise
constant labeling u, if we enforce the approximate gradi-
ent ∇uk to be constant zero for all k. In (3), this can
be achieved by setting h(x, uk(x),∇uk(x)) = c |∇uk|
with a constant c > 0 and then letting c → ∞ to en-
force ∇uk ≡ 0 in Ω \ Suk . Inserting the convex con-
jugate h∗k(x, λ, q) = δ{|q|≤c}, we find that the conditions
in (7) now reduce to

bλ(x) ≥ 0,

|∂λpλ(x)| ≤ c,
|pλ(x)− pγ(x)| ≤ dk(λ, γ).

(28)



The supremum over bλ(x) ≥ 0 is easily eliminated from
(6) since vkλ(x) ≥ 0, i.e. −bλ(x)vkλ(x) ≤ 0 with 0 being
the maximum possible value. The second constraint in (28)
follows from the third if we choose c ≥ maxλ>γ

dk(λ,γ)
|λ−γ| .

Thus we arrive at (16) with the set Ck as claimed in the
proposition.

Proof of Proposition 4.2. We choose a special form for
pλ as

pλ =

Nr∑
i=1

Aiλqi, (29)

with q : Ω × {1, . . . ,Mk} → Rn such that |q| ≤ 1 and the
matrix A : RNr×Nk of the euclidean representation of dk.
The constraint for p in (16) is then satisfied, since by the
Cauchy-Schwarz inequality,

|pλ − pγ | =

∣∣∣∣∣
Nr∑
i=1

(Aiλ −Aiγ)qi

∣∣∣∣∣
≤

√√√√ Nr∑
i=1

(Aiλ −Aiγ)2 ·

√√√√ Nr∑
i=1

|qi|2

= |Aeλ −Aeγ | |q| ≤ dk(λ, γ).

For the second inequality, we made use of the definition of
A, which implies |Aeλ −Aeγ | = dk(λ, γ). Plugging (29)
into (16) we obtain the desired result

Jk(uk) ≥ sup
|q|≤1

∑
λ∈Λk

∫
Ω

(
Mk∑
i=1

Aiλqi

)
· ∇ukλ dx

= sup
|q|≤1

∫
Ω

Mk∑
i=1

qi · ∇

(∑
λ∈Λk

Aiλu
k
λ

)
dx

= sup
|q|≤1

∫
Ω

Mk∑
i=1

qi · ∇(Auk)i dx = TVv(Auk).

The inequality in the first step is a consequence of choosing
a the special form of p’s, thus reducing the set over which
the supremum is taken. This completes the proof.
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