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Abstract. We propose a novel idea to introduce regularization based on
second order total generalized variation (T'GV) into optimization frame-
works based on functional lifting. The proposed formulation extends a
recent sublabel-accurate relaxation for multi-label problems and thus
allows for accurate solutions using only a small number of labels, sig-
nificantly improving over previous approaches towards lifting the total
generalized variation. Moreover, even recent sublabel accurate methods
exhibit staircasing artifacts when used in conjunction with common first
order regularizers such as the total variation (TV). This becomes very
obvious for example when computing derivatives of disparity maps com-
puted with these methods to obtain normals, which immediately reveals
their local flatness and yields inaccurate normal maps. We show that
our approach is effective in reducing these artifacts, obtaining disparity
maps with a smooth normal field in a single optimization pass.

1 Introduction

Many computer vision tasks can be formulated as continuous optimization prob-
lems over a label assignment u : 2 — I', where 2 C R? denotes the image do-
main and I" C R” the label domain. Correct solutions are characterized as the
minimizers of an energy functional E(u), which is designed in such a way that
low-energy configurations correspond to some desired property, such as u being
a smooth disparity map consistent with a given stereo pair. Thus, the energy F
typically consists of a (non-convex) point-wise label cost which optimizes the fit
to the observed data, and a regularization term which models interactions be-
tween neighbouring points. In order to find the optimal solutions u, approaches
based on Markov random fields (MRFs) [9,1] discretize {2 as a set of nodes
(e.g., pixels or superpixels) and I" as a set of labels {1,..., ¢}, with the graph
cut class of methods as a popular way to obtain minimizers [13]. Notably, the
construction by Ishikawa [12] allows to obtain globally optimal solutions for con-
vex interactions despite the data term being non-convex. A spatially continuous
reformulation of this approach [18], based on the idea of functional lifting or
the calibration method [1], reduces grid bias and memory requirements. Other
related work in this context studies more general regularizers based on embed-
dings of the labels [14], structured label spaces [10,7] or the relationship between
discrete and continuous approaches [23].
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Fig. 1. Recent sublabel-accurate optimization algorithms [15,16] yield accurate and at
first glance smooth disparity maps (bottom right corners). However, the surface normal
maps (top left corners) obtained from the disparity maps by computing derivatives [22]
are often still very noisy due to staircasing artifacts. The proposed approach penalizes
second order derivatives based on the TGV2-prior and yields smooth disparity and
normal maps in a single optimization pass.

However, using a discrete label space does not allow for a faithful approxi-
mation of the underlying continuous model in practical problems such as image
denoising or stereo matching. The above approaches [12,18] often yield results
which exhibit a strong label bias degrading the result for a coarse sampling, or
the discretization leads to unreasonably high demands in memory when using a
finer sampling. In [15,16], Moellenhoff et al. thus substantially generalize the idea
of functional lifting and derive formulations based on a fully continuous model.
While their work allows for a sublabel-accurate approximation of the original
(possibly nonconvex) energy, the results still exhibit some fine scale staircas-
ing artifacts as can be seen in Fig. 1. This is particularly bad if derivatives of
the result are required, such as in the above example, where normal maps are
computed directly from the disparity maps [22], as this strongly emphasizes the
artifacts. In practice, the normal maps become useless for subsequent tasks such
as intrinsic image decomposition. Thus, [22] propose a two-pass framework, with
a separate optimization pass for surface normal maps. While this achieves very
good results, it is conceptually not as elegant as solving a single problem.

1.1 Contribution

In this work, we propose an empirical extension to the framework by Moel-
lenhoft et al. [15,16], which is based on the total generalized variation (TGV)
[5]. Although a mathematical validation of our approximation remains open, we
demonstrate in quantitative experiments that our method obtains reasonable
solutions to the optimization problem. In particular, we clearly improve over a
previous approach to approximately lifting the total generalized variation [20],
arriving closer to the optimal solution with less label bias due to sublabel ac-
curacy. Furthermore, we show that our regularization effectively manages to
remove staircasing artifacts produced e.g. by total variation (TV) regularization
as in [15], and provides similarly accurate normals when applied to a disparity
estimation task as the approach [22], which explicitly smoothes normals in a
post-processing step.
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2 Background and related work

2.1 Preliminaries

Our formulation is an empirical extension to the one proposed by Moellenhoff
et al. [16], who propose a fully continuous model inspired by the celebrated
Mumford-Shah functional [2,17],

E(u) = / flz,u(x), Vu(z)) dz
2\ Jy (1)
—|—/ d(x,uf(a:),uJ“(x),l/u(x)) dH"(z).
Ju
The model is composed of two different integrands for the region {2\ J,,, where
u is continuous, and the (n — 1)-dimensional discontinuity set J, C 2. The
integrand f : 2 x I' x R® — [0,00] for the continuous part is a combined
dataterm and regularizer, where the regularizer penalizes variations in terms of
the gradient Vu. On the discontinuity set .J,,, the function d : 2 x I'x 'xS"~t —
[0, c0] penalizes jumps from 4~ to 4T in unit direction v,.
The energy (1) is defined for u in the space of special functions of bounded
variation (SBY). This is a subset of the space of functions BY({2) of bounded
variation, which are those functions u € L!(£2;R) such that the total variation

TV(u) = sup { /Q WDivepdz : o € cg(n;w)} @)

is finite. Functions in SBV(2) are now exactly those u € BV(£2) whose distri-
butional derivative Du can be decomposed into a continuous and a jump part
as required for (1),

Du=Vu-L"+ (ut —u )y, - H" ! | u, (3)

with £" denoting the n-dimensional Lebesgue measure and H"~!|.J,, the (n—1)-
dimensional Hausdorff measure restricted to the jump set J,,.

In the above formulation, f can be nonconvex in the first two variables,
and thus allows a surprisingly large class of vision problems to be represented
by (1). Although this makes (1) a difficult nonconvex optimization problem,

Moellenhoff et al. [16] found a sublabel-accurate formulation which employs a
piecewise convex relaxation of the energy between labels. As we build upon their
framework, we follow [16] and make the following simplifying assumptions on the

components of the energy (1):

— The Lagrangian f in (1) is seperable into a possibly nonconvex dataterm
p: 82 x ' = R and convex regularizer 7 : {2 x R",

flx,t,9) = plx,t) +n(z, g). (4)

— The isotropic jump regularizer d in (1) is induced by a concave function
K : RZO — R:

d($7u_’u+7yu):’€(’u__U'+‘)HVUH2 (5)
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Fig.2. The central idea behind the convex relaxation of (1) is to reformulate the
problem in terms of the complete graph G, C 2 x I' of w : 2 — I'. Since the
dimensionality of this reformulation is higher than the dimensionality of the original
problem, this is often referred to as lifting the problem.

— The range I' = [vy1,7¢] C R is a compact interval divided into k¥ = £ — 1
invervals at the boundaries v;,7 € {1,...,¢}. Although most formulations
work for arbitrary label intervals, we assume equidistant labels for simplicity
of notation and denote the label distance by h.

2.2 Functional Lifting

The basic idea for the convex relaxation used in [16] makes use of the fact that
for binary segmentation problems, the total variation (2) penalizes the length
of the boundary. This was first used in [1,3,6] to derive convex relaxation of
nonconvex optimization problems and applied to imaging problems by Pock et
al. [18]. An illustration of this idea of reformulating the energy as the flux through
the complete graph G, of the objective u for the 1D case is shown in Fig. 2.

The reformulation in terms of the characteristic function 1{, -, of the sub-
graph {v < u} :={(z,7) € 2 x I : v < u(z)} is given by

B(u) = F(L{ycuy) = sup / (v, o) dH, (©)
pek JG,

where
K= {(gpx,cpt) ECIHNRXxR,RYXR) | Vo€ 2:Vt,t' €R:
‘pt(xat) + p(l‘,t) > n*(m,gox(sc,t)), (7>

/twm(fEaT)dT <f€(|t—t’)}, (8)

2

and n* denotes the convexr conjugate of the regularizer 7. The normal vg, in (6)
is given by the distributional derivative of the characteristic function of the
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subgraph D1y, ..y}, allowing for the reformulation

F(lgyeuy) = sup / (D1gycuy. ) d(@.7), )
ek JOxIn

which is then relaxed to

inf sup/ (Dv, @) d(x,7), (10)
vel pek J xR

where

C={v e BV (2 xR;[0,1]) | YVt <1 :v(z,t) =1,
Vit > v, v(z,t) = 0,v(z, ) non-increasing}.
(1)

The key contribution of [16] is an elegant discretization of the variables v
and ¢, allowing for a sublabel-accurate approximation of the original energy.
Their representation of the primal variable v uses coefficients for each label
interval I; = [7;,vi+1], denoted by o(x, ) € [0,1] to allow for continuous values
in between the labels even after discretization. Writing the lifted primal variable
coeflicients as a vector allows for computation of the final result by just summing
over the entries of that vector.

For an illustration see the point p in Fig. 2, where the discretization of the
lifted variable yields:

k
o(p,-) = Y _ed(p,i) = h-[1,1,0.8,0]". (12)

i=1
An intuitive derivation for this representation is also given in [15], where the

vector in (12) is interpreted as a linear interpolation between labels 3 and 4,
which are represented by [1,1,0,0]7 and [1,1,1,0]7, respectively.

Using a piecewise linear approximation for the dual variable ¢;, the authors
of [16] arrive at a sublabel-accurate approximation of the original energy, en-
abling an implementation of the constraints (7) and (8) individually on each
label interval I'; as orthogonal projections onto the epigraphs of n* and p;. Here
pi = p + dr,, which shows that this implementation computes the convex en-
velope of the original dataterm on each interval I;. In particular, they show
that for regularizers n that are support functionals of convex sets, yielding n*
as an indicator function only attaining the values 0 and oo, the constraint (7)
allows for a separation of dataterm and regularizer as implemented for the total
variation in [15].

2.3 The Total Generalized Variation

The total generalized variation (TGV) of order k was defined in [5] and has
subsequently successfully been used for example to reconstruct smooth 3D sur-
faces [19,8]. Generalizing from the definition (2) of the total variation, it is defined
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as

TGV (u) := sup { / uDivFe dz | € CF(£2; Sym®(RY)),
Q

(13)
HDivlszm <anl=0,... k- 1},

with weights o = [a, ..., ax_1]. The space Sym”(R%) denotes the symmetric
k-tensors on R?, e.g., the space S¥*? of symmetric d x d matrices for k = 2.

We will focus on the case k = 2, where one can get an intuition of how TGV
penalizes variations by deriving the “primal” formulation [5]

2 _ : _
TGV, (u) = wecgr(l(fz;w) ar [[Vu —wlly; + ao [|E(w)]l,,; - (14)

From (14), the TGV? penalty can be interpreted as an optimal balancing of
first and second order derivative norms. Ranftl et al. [20] use this formulation
to develop an approximation of the total generalized variation for nonconvex
dataterms using the lifting approach [18]. They specialize the first integral in (1)
to obtain

Eq (w|u)

mina/ | Duwll, dx+/ 1 Du =, dxH/ oz uydz,  (15)
2 2 (9]

U, W

Es(u|w)

which separates the problem into a convex subproblem FE7, optimized over w for
a fixed u using standard techniques, and a nonconvex subproblem Fs, where w
is assumed to be fixed and the lifted optimization [18] is applied to solve for u. In
the implementation of [20], u is allowed to deviate up to half the label distance
in each direction to allow for smooth surfaces.

3 Lifting the Total Generalized Variation

In our approach to lifting the total generalized variation, we make use of the fact
that the framework of [16] allows for a label-wise optimization of the problem.
Since at discontinuities, TGV approximates the total variation (cf. [5]), we set
#(a) = a in (1) and focus on the formulation for n as TGV? in the following.
The main idea of our approach is motivated by the fact that the only difference
between the definitions of TV (2) and TGV (13) is a more constrained set of
dual variables in TGV. Based on this observation, we set n* in the constraint
set (7) to the indicator function

0" (P2) = 6{—Div, vl <ao,IDiver|| <ar} (Pz)- (16)

This way, we perform TGV regularization on each label interval individually,
just as it has been done for TV in [15]. The constraints can be implemented
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Fig.3. A naive application of label-wise TGV leads to artifacts in the normal field
at disparity label transitions. Left: Ground truth normal map, Center: One can see
label artifacts (“kinks” in the wall on the left) for £ = 4 labels, Right: With £ = 8
labels, there are more artifacts at different locations for the £ = 7 label boundaries.

in the publicly available framework prost' presented in [15] by using Lagrange
multipliers w to enforce equality of ¢, to the negative divergence of some vector
field 9. One can see this by rewriting

TGV? = sup inf{(Vu — w, @) + (Ew, )}
loxll<an,lll<ao v

= sup inf{(Vu, ¢;) + (w, —p, — Dive)) }.

e ll<arll¢l<ao ™

(17)

The lifted implementation uses the same piecewise constant discretization of
the spatial variables as explained in [16], while for the dual variable ¢; (which
has not changed in our formulation) a piecewise linear discretization is chosen
to allow for piecewise convex sublabel-accurate approximation of the original
energy.

However, if we just penalize label-wise with TGV, the solution exhibits ar-
tifacts which indicate that our formulation is not yet entirely correct. This can
be observed in Fig. 3, where we display the resulting normal maps from this
naive implementation for light field depth estimation task (cf. section 4 for more
details).

One can obtain an intuition for why these artifacts appear when observing
a 1D closeup of the artifacts as shown in Fig. 4 (Center). One can see that
especially the lower label is oversmoothed by the TGV prior towards the label
boundary (constant 1.0) on the left. This leads to an irregularity in the final result
retrieved as the sum over the labels. The desired result is shown in Fig. 4 (Left)
and illustrates that the plane with constant slope would be best approximated
by both labels allowing a sharp transition to the label boundary at a single pixel.

The theoretical reason behind this failure is that when we just perform label-
wise regularization, we assume every change of label is a jump discontinuity,
for which we do not penalize the second order derivative. Obviously, as the
above example shows, this assumption does not always hold true. Thus, we need

! https://github.com/tum-vision/prost
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Fig.4. Left: Synthetic 1D example for two label indicator functions (red and blue),
where the exact result is a line with constant slope (green). Center: Label-wise TGV
tends to oversmooth the coefficients © according to the second order component at
the transition to constant maximal or minimal value of the respective label, leading
to artifacts when computing the result v as the sum of the coefficients. Right: Our
additional prior penalizing differences in the second order gradients of neighboring
labels yields a consistent result.

an additional penalty for the second order gradient in the jump penalization.
However, the basic framework developed in [1,3,6] used in [16] does not allow
for this to be implemented, since the jump penalty in (1) may only depend on
the height of the jump and its direction.

Unfortunately, current attempts at solving this problem in a principled the-
oretical way, by deriving a formulation based on [1,6] for a TGV-based prior,
have not led to a satisfying implementation so far. Nevertheless, we managed to
implement an empirically accurate solution inspired by the observations in Fig. 4
(Left). We observe that in most points, both label coefficients have a constant
slope (either zero, or the slope of the resulting plane), yielding zero second order
derivatives. Nonzero second order derivatives only appear at a single point for
both coefficients, where (1) changes from the slope of the result to constant 1.0
and 0(2) changes from constant 0.0 to the slope of the result. Thus, we need to
penalize different second order derivatives across neighboring labels. Since en-
forcing this relation using a hard constraint would make the lifting obsolete as
the dual variables would be the same across all labels, we enforce a soft constraint
(2, i+ 1) — (x,4)|| < o, effectively penalizing o ||Eb(x,i 4 1) — Eib(,i)]|.
Thus, we impose the same penalty on these differences as on the second order
part itself. Fig. 4 (Right) shows how this approach successfully removes the ar-
tifacts in the 1D closeup. Due to the additional penalty, both labels receive a
similar amount of second order smoothing, which cancel each other out, yielding
a consistent surface structure after retrieving the final result. Fig. 5 shows the
results for the normal maps, which are now almost free of discretization artifacts.

4 Experiments

4.1 ROF Denoising

In order to verify the quality of our lifted approximation to the total general-
ized variation experimentally, we first apply our formulation to the convex ROF
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Fig.5. Our proposed method correctly penalizes different second order derivatives
across different labels and thus can remove the label wise artifacts from the naive
approach in figure 3. Left: Ground truth normal map, Center and Right: Results
of the proposed lifted implementation with £ = 4 and ¢ = 8 labels, respectively.

denoising problem [21] where the dataterm is designed for Gaussian noise,

pl,t) = (t - f(x))? (18)

for a grayscale input image f : 2 — R. For this convex energy, the convex
envelope of the energy used for direct optimization as well as for the case £ =
2 is the same as for lifted versions with higher numbers of labels. In Fig. 6,
we compare our method to quadratic and Huber regularization as enabled by
[16] (see [18] for derivations of the epigraphical projections required), and to
our implementation of the baseline TGV? lifting approach [20]. The energies
for Huber and quadratic regularization are computed in a straightforward way
from their definitions using the resulting u. For the TGV energies, we first solve
subproblem Es(w|u) in (15) for w as an instance of ROF given u, and then
compute the final energy using the resulting pair u and w. One can see that even
for small numbers of labels, our approach manages to achieve similar energies as
the direct optimization, the differences to the direct energy only being slightly
larger than for Huber and quadratic regularization demonstrated in [16]. The
baseline approach [20], however, despite allowing values in between the labels,
still has a strong label bias. Since the parameters in (15) are different from the
original TGV parameters in (14), we compute them as A\ = o% and oo = ¢2 to
have a fair comparison.

4.2 Robust Truncated Quadratic Denoising

In practice, the simple ROF denoising term [21] is only of limited use because
the model does not account for possible outliers which are often present in a
captured image (i.e., salt-and-pepper noise). For this kind of noise, a truncated
version of the dataterm can achieve better results, penalizing outliers with a
constant value,

pla,t) = 5 min{(t - f(2))%, v} (19)
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Direct =2 ¢ =16 Direct

Quadratic [16]
Huber [16]

E = 260.58 E = 260.58 E = 262.62

;8

Input image E = 3215.63 E = 625.13 E = 219.84 E = 219.92 E = 221.89

TGV? Baseline [20]

TGV? Proposed

Fig. 6. Results of different regularizers for convex ROF-denoising with different num-
bers of labels. The proposed method recovers the original energy with only slightly
larger margins than for Huber and Quadratic regularization which have been demon-
strated in [16], while the baseline method [20] shows strong label artifacts. Note: the
direct TGV? optimization result displayed for TGV? proposed is the same as for the
baseline approach [20], where we show the input image instead.

Fig. 7 shows that our TGV-based lifted regularization achieves good results al-
ready for ¢ = 10 labels, similarly as quadratic and Huber regularization with the
approach in [16]. In contrast, the baseline TGV approach [20] exhibits a strong
label bias for £ = 10 and severe oversmoothing for ¢ = 20. The energies dis-
played in Fig. 7 show a corresponding substantial improvement of our approach
compared to the baseline TGV relaxation [20].

4.3 Light Field Disparity Estimation

We evaluate our formulation on the light field disparity estimation task with a
special focus on the quality of surface normals. Since the behaviour of our algo-
rithm across different numbers of labels was already evaluated in the previous
experiments, we focus on a comparison of TV, Huber, and the proposed TGV?
regularization with ¢ = 8 labels and compare it to the approach by Strecke
et al. [22], which explicitly smoothes the normal map derived from sublabel-
accurate TV-based optimization of disparity using [15] in a post-processing step.
This method is still among the top-ranked algorithms for surface normal quality
on the benchmark [11]. To have a fair comparison of how the regularization in-
fluences the result, we use the same dataterm used in [22] and refer to their work
for details on how it is constructed and implemented. Figs. 8 and 9 demonstrate
that we manage to achieve similar results as [22], denoted as OFSY 330DNR in
the figures, without the need of computing the surface normals explicitly for
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Fig. 7. Results of different regularizers for nonconvex truncated ROF denoising with
different numbers of labels. The quadratic regularizer oversmooths details and Hu-
ber exhibits similar piecewise constant artifacts at the total variation. The proposed
method retains details and results in smooth transitions, while the baseline method [20]
does exhibit label artifacts and severe oversmoothing for the same parameter setting.

optimization or running two optimization passes. One can further see that our
approach yields significantly better results in this respect than TV or Huber
regularization.

Besides the Median Angular Error (MAE) for planar and non-planar surfaces
in Fig. 8, Fig. 9 shows that the quality of our obtained disparity maps, measured
by the percentage of pixels deviating more than 0.07 from the ground truth. This
so-called BadPiz(0.07) measure is similar to the appoach [22].

5 Conclusions

Our approach extends the recent functional lifting approaches [15,16] to obtain
experimentally accurate solutions using a TGV-based prior. We show in our ex-
periments that our formulation significantly improves over the previous approach
to lifting the total generalized variation [20], which is based on an earlier func-
tional lifting approach [18] and decouples the regularizer from the data term.
When applied to the task of light field disparity estimation, our TGV?2-based
approach outperforms other regularizers implemented in [15,16] in terms of the
quality of surface normals. In a single pass optimization, we manage to achieve
similar results as [22], who explicitly smooth the normal map in a post-processing
step after sublabel-accurate optimization using [15].

Unfortunately, our method is only empirical so far and based on heuristic
observations - while results are convincing, it currently lacks theoretical verifica-
tion of correctness. However, we hope that the insights presented in this paper
can inspire future studies on a more principled approach towards deriving our
constraint sets, as our experiments indicate that they seem to work in practice.
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Fig. 8. Normal maps and Median Angular Errors obtained on the benchmark training
dataset [11] for different regularizers and the method in [22].
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Fig.9. Disparity maps and BadPiz0.07 errors obtained on the benchmark training
dataset [11] for different regularizers and the method [22].
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