Reflection Separation in Light Fields based on Sparse Coding and Specular Flow

Antonin Sulc, Anna Alperovich, Nico Marniok and Bastian Goldluecke
Dichromatic model assumption, color of each ray r is sum of *specular* and *diffuse* terms

$$L(r) = \text{Specular}(r) + \text{Diffuse}(r) \quad (1)$$

[Shafer, CRA 1985]
Dichromatic model assumption, color of each ray \(r \) is sum of *specular* and *diffuse* terms

\[
L(r) = \text{Specular}(r) + \text{Diffuse}(r) \tag{1}
\]

[Shafer, CRA 1985]
Dichromatic model assumption, color of each ray r is sum of *specular* and *diffuse* terms

$$L(r) = \text{Specular}(r) + \text{Diffuse}(r)$$ \hspace{1cm} (1)

[Shafer, CRA 1985]

1. **Single light source**
Dichromatic model assumption, color of each ray r is sum of *specular* and *diffuse* terms

\[
L(r) = \text{Specular}(r) + \text{Diffuse}(r)
\] \hspace{1cm} (1)

[Shafer, CRA 1985]

1. **Single light source**
2. **Dielectric material:**

\[
\text{Specular}(r) = S_c \sigma (r)
\] \hspace{1cm} (2)
Image formation model

- **Dichromatic model** assumption, color of each ray r is sum of *specular* and *diffuse* terms

\[L(r) = \text{Specular}(r) + \text{Diffuse}(r) \]

[Shafer, CRA 1985]

1. **Single light source**
2. **Dielectric material:**

\[\text{Specular}(r) = S_c \sigma(r) \]

3. **Finite and fixed set of K albedos** $D = (A_1, \ldots, A_K)$,

\[\text{Diffuse}(r) = A_1 \alpha_1(r) + \cdots + A_K \alpha_K(r) \]
The image formation can be formulated as Non-Negative Matrix Factorization (NMF)

\[L(r) = \text{Specular}(r) + \text{Diffuse}(r) \]
The image formation can be formulated as Non-Negative Matrix Factorization (NMF)

\[L(\mathbf{r}) = \text{Specular}(\mathbf{r}) + \text{Diffuse}(\mathbf{r}) = S_c \sigma(\mathbf{r}) + \sum_{k=1}^{K} A_k \alpha_k(\mathbf{r}) \]
Non-Negative Factorization

The image formation can be formulated as Non-Negative Matrix Factorization (NMF)

\[
L(r) = \text{Specular}(r) + \text{Diffuse}(r)
\]

\[
= S_c \sigma(r) + \sum_{k=1}^{K} A_k \alpha_k(r)
\]

\[
= S_c \sigma(r) + D\alpha(r)
\]
The image formation can be formulated as Non-Negative Matrix Factorization (NMF)

\[L(r) = \text{Specular}(r) + \text{Diffuse}(r) \]

\[= S_c \sigma(r) + \sum_{k=1}^{K} A_k \alpha_k(r) \]

\[= S_c \sigma(r) + D\alpha(r) \quad (4) \]

Idea Use as few albedos as possible
The image formation can be formulated as Non-Negative Matrix Factorization (NMF)

\[L(\mathbf{r}) = \text{Specular}(\mathbf{r}) + \text{Diffuse}(\mathbf{r}) = S_c \sigma(\mathbf{r}) + \sum_{k=1}^{K} A_k \alpha_k(\mathbf{r}) = S_c \sigma(\mathbf{r}) + D\alpha(\mathbf{r}) \]

Idea Use as few albedos as possible

Sparsity is enforced by \(\| \cdot \|_1 \) norm on \(\alpha \) and \(\sigma \):

\[
\arg\min_{D,\alpha} \lambda_s \| \sigma \|_1 + \lambda_d \| \alpha \|_1 + \| L - S_c \sigma - D\alpha \|_2^2
\]

[Akashi and Okatani, ACCV 2014]
Our contributions

We extended the original NMF approach
Our contributions

We extended the original NMF approach

\[
\arg\min_{\alpha} \lambda_s \|\sigma\|_1 + \lambda_d \|\alpha\|_1 + \|L - S_c\sigma - D\alpha\|_2^2
\]

dataterm

Light field anisotropic diffuse regularizer \([GW13]\) +

Light field anisotropic specular regularizer for specular motion
Our contributions

We extended the original NMF approach

\[
\arg \min_{\alpha} \lambda_s \|\sigma\|_1 + \lambda_d \|\alpha\|_1 + \|L - S_c\sigma - D\alpha\|_2^2 + R_d(\alpha)
\]

Light field anisotropic diffuse regularizer [GW13]
Our contributions

We extended the original NMF approach

\[
\arg\min_{\alpha} \lambda_s \| \sigma \|_1 + \lambda_d \| \alpha \|_1 + \| L - S_c \sigma - D \alpha \|_2^2 \\
+ \\
R_d(\alpha) \\
\text{Light field anisotropic diffuse regularizer [GW13]} \\
+ \\
R_s(\sigma) \\
\text{Novel Light field anisotropic specular regularizer for specular motion}
\]
Light fields
A 2D horizontal cut (green) is called an **epipolar plane image (EPI)**

\[(u, v) \rightarrow (u, v, s, t)\]

[Wanner and Goldluecke, CVPR 2012 & TPAMI 2014]
Light-fields and specular surfaces

$L(u, v, s, t)$

$L(u, v, s+1, t)$
A Lambertian 3D point has the same color in all views.

Disparity d is the displacement of the two projections of a 3D point between two consecutive views.

Color along $[d; 1]^T$ should be constant in u_{ty} and u_{sx}.
Anisotropic regularizer J_v encourages constancy in direction of vector field $v = [d; 1]^T$ for every component e_i of the EPI e

$$J_v (e) = \sum_{i=1} \int_{\text{dom}(e)} \sqrt{\nabla e_i^T (vv^T) \nabla e_i} \, dp$$ \hspace{1cm} (6)$$

[Goldluecke and Wanner CVPR 2013]
Regularization on the complete light field

Two EPIs, horizontal u_{ty} and vertical u_{sx}

$$J_d (\alpha) = \int J_{[1 \ d]}^T (\alpha_{s,x}) \ d (s, x) \quad \text{/ / vertical EPI}$$
Two EPIs, horizontal \mathbf{u}_{ty} and vertical \mathbf{u}_{sx}

\[\begin{align*}
J_d (\alpha) &= \int J_{[1 \ 0]}^T (\alpha_{s,x}) \, d(s, x) \quad \text{// vertical EPI} \\
&+ \int J_{[0 \ 1]}^T (\alpha_{t,y}) \, d(t, y) \quad \text{// horizontal EPI}
\end{align*} \]
Reflection follows different motion, **specular flow**
The motion of specularities

- Reflection follows different motion, **specular flow**
- Specular flow depends on **surface curvature**
The motion of specularities

- Reflection follows different motion, **specular flow**
- Specular flow depends on **surface curvature**
The motion of specularities

- Reflection follows different motion, **specular flow**
- Specular flow depends on **surface curvature**

\[\hat{r} \]

\[\hat{C} \]

Motion \rightarrow Geometry
Geometry \rightarrow Motion

[Adato, Vasilyev, Shahar and Zickler, ICCV 2007]
Computation of specular flow

Disparity map d

Specular flow $(w_{s,x}, w_{s,y})$

1. Calculate depth map from disparity d for a calibrated camera
2. Calculate surface curvature C
3. Given baseline and curvature (C) we can infer specular flow
 - Move **horizontally**, we obtain specular flow $w_s = (w_{s,x}, w_{s,y})$
 - Move **vertically**, we obtain specular flow $w_t = (w_{t,x}, w_{t,y})$
Idea The regularization direction is parallel to the individual EPIs
Idea The regularization direction is parallel to the individual EPIs.

\[
\int J_{[1\ d]}^T (\alpha_{s,x}) \, d(s,x) = \int J_{[1\ d\ 0]}^T (\alpha_s) \, ds \\
\int J_{[1\ d]}^T (\alpha_{t,y}) \, d(t,y) = \int J_{[1\ 0\ d]}^T (\alpha_t) \, dt
\] (8)

Regularization on **epipolar plane volume** is about ten times faster compared to sum over all 2D EPIs.
Regularization of specular components J_s

\[\int J_{[1,w_{t,x},w_{t,y}]}^T (\sigma_t) \, dt \]
\[\int J_{[1,w_{s,x},w_{s,y}]}^T (\sigma_s) \, ds \]
Final energy

\[
\arg\min_{u=\{\sigma, \alpha\}} \int E(u(r), D) \, dr + \text{//sparsity + data term}
\]
Final energy

$$\arg\min_{u=[\sigma,\alpha]} \int E(u(r), D) dr + \mu_d J_d(\alpha) + \mu_s J_s(\sigma) + \rho_d \int ITGV_2(\sigma_s, t) ds dt + \rho_s \int ITGV_2(\sigma_s, t) ds dt + \text{// sparsity + data term} + \text{// diffuse volume}$$
Final energy

\[
\arg\min_{u=[\sigma, \alpha]} \int E(u(r), D) \, dr + //\text{sparserity + data term}
\]

\[
\mu_d J_d (\alpha) + //\text{diffuse volume}
\]

\[
\mu_s J_s (\sigma) + //\text{specular volume}
\]
Final energy

\[
\arg\min_{u=[\sigma, \alpha]} \int E(u(r), D) \, dr + \frac{1}{\rho_d} \int \operatorname{ITGV}_2(\alpha_{s,t}) \, d(s, t) + \frac{1}{\mu_d} J_d(\alpha) + \frac{1}{\mu_s} J_s(\sigma) + \text{// sparsity + data term} \\
+ \text{// diffuse volume} \quad + \text{// specular volume} \quad + \text{// diffuse spatial}
\]
Final energy

\[
\text{arg min}_{\mathbf{u}=[\sigma,\alpha]} \int E(\mathbf{u}(\mathbf{r}), D) \, d\mathbf{r} + \text{//sparsity + data term}
\]

\[
\mu_d J_d (\alpha) + \text{// diffuse volume}
\]

\[
\mu_s J_s (\sigma) + \text{// specular volume}
\]

\[
\rho_d \int \text{ITGV}_2 (\alpha_s, t) \, d(s, t) + \text{// diffuse spatial}
\]

\[
\rho_s \int \text{ITGV}_2 (\sigma_s, t) \, d(s, t) + \text{// specular spatial}
\]
Initialize Dictionary D, and sparse coefficients α, σ,

- precalculate light source color S_c,

[Yang, Gao and Li, ICCV 2015]
Optimization

Initialize Dictionary D, and sparse coefficients α, σ,
- precalculate light source color S_c,
 [Yang, Gao and Li, ICCV 2015]
- precalculate disparity map d.
 [Wanner and Goldluecke, TPAMI 2014]
Initialization Dictionary D, and sparse coefficients α, σ,
- precalculate light source color S_c,
 [Yang, Gao and Li, ICCV 2015]
- precalculate disparity map d.
 [Wanner and Goldluecke, TPAMI 2014]
- precalculate orientation for $J_d(\alpha)$ and $J_s(\sigma)$
Optimization

Initialize Dictionary D, and sparse coefficients α, σ

- precalculate light source color S_c,
 [Yang, Gao and Li, ICCV 2015]
- precalculate disparity map d.
 [Wanner and Goldluecke, TPAMI 2014]
- precalculate orientation for $J_d(\alpha)$ and $J_s(\sigma)$

Iterate Update α and σ with gradient descent of
$\|L - S_c\sigma + D\alpha\|^2_2$.
Optimization

Initialize Dictionary D, and sparse coefficients α, σ,

- precalculate light source color S_c,

 [Yang, Gao and Li, ICCV 2015]

- precalculate disparity map d.

 [Wanner and Goldluecke, TPAMI 2014]

- precalculate orientation for $J_d(\alpha)$ and $J_s(\sigma)$

Iterate

- Update α and σ with gradient descent of

 $\| L - S_c \sigma + D\alpha \|_2^2$.

- Update α and σ with subgradient descent for
 sparsity norm.
Initialize Dictionary D, and sparse coefficients α, σ,

- precalculate light source color S_c,

 [Yang, Gao and Li, ICCV 2015]

- precalculate disparity map d.

 [Wanner and Goldluecke, TPAMI 2014]

- precalculate orientation for $J_d(\alpha)$ and $J_s(\sigma)$

Iterate Update α and σ with gradient descent of

\[\| L - S_c \sigma + D\alpha \|^2_2. \]

- Update α and σ with subgradient descent for sparsity norm.

- Update α and σ with subgradient descent of diffuse and sparsity regularizer $J_d(\alpha)$ and $J_s(\sigma)$.
Optimization

Initialize Dictionary D, and sparse coefficients α, σ,
- precalculate light source color S_c,

 [Yang, Gao and Li, ICCV 2015]
- precalculate disparity map d.

 [Wanner and Goldluecke, TPAMI 2014]
- precalculate orientation for $J_d(\alpha)$ and $J_s(\sigma)$

Iterate
- Update α and σ with gradient descent of $\|L - S_c\sigma + D\alpha\|_2^2$.
- Update α and σ with subgradient descent for sparsity norm.
- Update α and σ with subgradient descent of diffuse and sparsity regularizer $J_d(\alpha)$ and $J_s(\sigma)$.
- Update $\alpha_{s,t}$ and $\sigma_{s,t}$ for every subaperture view (s, t) with TGV.
Optimization

Initialize Dictionary D, and sparse coefficients α, σ,

- precalculate light source color S_c,

 [Yang, Gao and Li, ICCV 2015]

- precalculate disparity map d.

 [Wanner and Goldluecke, TPAMI 2014]

- precalculate orientation for $J_d(\alpha)$ and $J_s(\sigma)$

Iterate

- Update α and σ with gradient descent of

 $\|L - S_c\sigma + D\alpha\|_2^2$.

- Update α and σ with subgradient descent for sparsity norm.

- Update α and σ with subgradient descent of diffuse and sparsity regularizer $J_d(\alpha)$ and $J_s(\sigma)$.

- Update $\alpha_{s,t}$ and $\sigma_{s,t}$ for every subaperture view (s, t) with TGV.
Results
Reflection Separation in Light Fields

A. Sulc, A. Alperovich, N. Marniok and B. Goldluecke

Input

Ours Single view [AO14] Tao et al. [TSW*15]

Diffuse

Specular
Reflection Separation in Light Fields
Reflection Separation in Light Fields

A. Sulc, A. Alperovich, N. Marniok and B. Goldluecke
Conclusion

1. We extend the original pixel-wise approach for reflection separation to 4D light fields.

2. Just like the original approach, we assume dichromatic model and a sparse linear combination of a finite set of albedos.

3. In addition, we regularize the diffuse component with the light-field based approach [GW13].

4. Furthermore, we introduce a novel anisotropic regularizer for specular components based on specular flow field.

5. We outperform the single image model [AO14] and previous light fields based approach [TSW*15].