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Abstract

We presenta recording scheme, image formationmodel
andreconstructionmethodthat enablesimage-basedmod-
elingof �owing bodiesof waterfrommulti-videoinputdata.
Therecordedwater is dyedwith a �uor escentchemicalto
measure the thicknessof a columnof water, which leads
to an image formationmodelbasedon integratedemissiv-
ities along a viewing ray. This modelallows for a photo-
consistencybasederror measure for a weightedminimal
surface, which is recoveredusinga PDE obtainedfromthe
Euler-Lagrangianformulationof the problem. Theresult-
ing equationis solvedusingthelevel setmethod.

1. Intr oduction

Recently, new multi-view reconstructionproblems,dif-
ferent from the traditional diffuse surface reconstruction,
haveemergedin the�eld of computervision. Theseinclude
multi-view reconstructionof time-varying,transparent,nat-
ural phenomenalike �re andsmoke [6, 5, 1].

The work so far concentrateson non-refractingmedia.
In this paper, we presenta level setmethodfor the recon-
structionof a time-varyingfree�o wing watersurface.This
problemarisesin thecontext of free-viewpointvideo,where
weareconcernedwith theautomaticacquistionof dynamic
modelsfor computergraphicspurposes.The main prob-
lem hereis thatthesurfacestructurecannot bedetermined
with traditionalmethodsdueto refractioneffects,implying
acomplex imageformationprocess.Wealleviatethisprob-
lem by dyeingthewaterwith a �uorescentchemical.This
allowsusto directlymeasurethethicknessof thewatervol-
umeasa raypassesthroughit andhits theCCD-chipof the
camera. In addition,a sophisticatedenergy minimization
methodis utilized for the reconstructionprocess,which is
ableto correctly incorporateerror functionsdependingon
surfacenormals. Obviously, this is a vital requirementif
onewantsto take into accountrefraction.

Image-basedmodeling of natural phenomenasuitable
for free-viewpoint video is performedusing sparseview
tomographicmethods[6, 1] or surfacebasedmethods[5].

Figure 1. Sour ce images from two of the cameras for

one frame of our test video sequence , in whic h we pour

�uorescent water from a bottle into a glass.

Recheet al. reconstructtreesfrom still images[11]. In [9],
thegeometryof hair is retrievedusinga singlecameraand
varyinglight sourcepositions,exploiting theanisotropicre-
�ectancepropertiesof hair.

Only limited work has beendone which directly ad-
dressesimage-basedreconstructionof water. In [8], a time-
varyingwatersurfaceisobtainedbyanalyzingthedistortion
of a known texturebeneaththewatersurfaceusingoptical
�o w andshapefrom shadingtechniques.Schultz[12] stud-
ies the reconstructionof specularsurfacesusing multiple
cameras.However, both of thesemethodscanonly deter-
minea height�eld for a rectangularsurfacearea,while we
reconstructfully three-dimensionalbodiesof water.

Anotherline of researchis refractive index tomography
e.g. [10, 14]. Thesemethodsusually needexpensive ap-
paratusesanddo not lendthemselvesto image-basedmod-
elling. Whereasrefractiveindex tomography attemptsto re-
constructa �eld of varyingrefractive indices,weknow that
wehaveaconstantrefractiveindex andneedto computethe
surfaceof avolumetricbodyof water.

Our paperis organizedas follows. Sect.2 de�nes the
reconstructionproblemwe want to dealwith andpresents
a mathematicaljusti�cation for the level set surface�o w
yieldinganoptimalsolution.Detailsfor theimplementation
using PDEsare discussedin Sect.3. We presentresults
obtainedwith bothsynthetic2D dataaswell asrecorded3D
dataof �o wing waterin Sect.4, andconcludewith ideasfor
futurework in Sect.5.



Figure 2. Left: Excitation and emission in �uor ophores:

the excitation wavelength chang es the amplitude of the

emission spectrum onl y, the pro�le stays the same.

Right: The use of �lter s generates a proper excitation

light sour ce, and allo ws the obser ver to measure the

emitted spectrum without interf erence from the excita

tion light sour ce.

2. GeneralReconstructionProblem

Our goal is to reconstructthesurfaceareaof a possibly
moving bodyof water, usingrecordingsfrom only a hand-
ful of fully calibratedcamerasdistributedaroundthescene.
In orderto be ableto work with a well-de�ned imagefor-
mationmodel,specialcarehasto betakenwhenacquiring
the watervideo data. We employ a �uorescentdye which
causesthewaterto emit visible light whenexposedto UV
radiation. An exampleinput imagefrom a singleframeis
shown in Fig. 1.

Thissectionembedsthereconstructionproblemwewant
to dealwith in a rigorousmathematicalframework. Sub-
section2.1 discussesthe imageformationmodelunderly-
ing the optimization. It shows how to generatesynthetic
views given a certainreconstructedsurface� , which can
be comparedto recordedreal-world data in order to de-
�ne a photo-consistency errormeasure.The 'best' surface
is determinedby minimizing an error functional optimiz-
ing photo-consistency. Thefunctionalis de�ned in subsec-
tion 2.2, while the mathematicalfoundationsfor its mini-
mizationusinga level setsurface�o w areadressedin sub-
section2.3. After thetheoreticaldiscussionin this section,
weproceedwith thedetailsof theimplementationin Sect.3.

2.1.ImageFormation Model

WedissolvethechemicalFluoresceinin thewater. Fluo-
resceinexhibitsaphoto-luminescentbehavior i.e. it hasthe
ability to absorblight of higher energy and subsequently
re-radiatelight with a lower frequency thanthe light used
for excitation. Fig. 2 explainsthis principle. Theemission
spectrumis independentof theexcitationwavelength,only
theamplitudeof theemittedlight changes.A schematicof
our studiosetupis shown on theright handside. We place
�lters in front of the light sourceandthe cameras,respec-

tively. Thetwo �lters allow usto measuretheemittedlight
only, which in turn letsustreatthebodyof waterasa self-
emissivemedium.

Weevenlydissolve thedyein thewateranduseastrong
UV sourceto illuminateit. Thisallows usto assumeacon-
stant�uorescentemissivity throughoutthe volume. Thus,
the accumulatedlight intensityalonga ray tracedthrough
the watercanbe computedby multiplying its total length
within the volume with a constantemittance� . Further-
more,acolorcalibrationon thecamerasis performed,such
that they exhibit a linearresponseto the incominglight in-
tensity, scalinglight intensityto imageintensityby a factor
of  .

Now, let p beapointin theimageplaneof cameraC, and
c bethecamera'scenterof projection.Wewantto compute
thetheoreticalpixel intensityI � (p) in thepresenceof asur-
face� , enclosinga volumeV� of waterpreparedasabove.
Let R(c;p) be the ray tracedfrom c in the directionof p
throughthe surface� , taking into accountcorrectrefrac-
tion, Fig. 4. We ignorescatteringandextinction effectsin
thewatervolume.Then,

I � (p) = 
Z

R (c;p) \ V�

� ds = �
Z

R (c;p) \ V�

ds:

The last integral just measuresthe lengththe ray traverses
throughV� . In orderto avoid having to determinethecon-
stant factor � experimentallyby acquiring and measur-
ing a calibrationscene,we implementan auto-calibration
scheme.All imageintensitiesaredividedby theaveragein-
tensityof thepixels in the imagewithin thesilhouette,and
all ray-tracedintensitiesby theaverageintensityof therays
correspondingto thesepixels. The resultingquotientsare
independentof thequantity� .

Now thatwe areableto computesyntheticviews given
a surface� , we have to determinehow well a reconstruced
surface�ts agivensetof inputviews. If weareableto quan-
tify theerror, it canbeusedto de�ne anenergy functional
mappingsurfacesto realnumbers,whoseminimumyields
anoptimalreconstructionresult.This aim is pursuedin the
next subsection.

2.2.Energy Minimization Formulation

We have to take careof photo-consistency of a recon-
structedsurface� with thegivensourceimages.We setup
anenergy functional

A (�) :=
Z

�
� (s;n(s)) dA(s); (1)

de�ned asan integral of the scalarvaluedweight function
� over the whole surface. �( s;n) measuresthe photo-
consistency error density, andmay dependon the surface
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point s andthe normaln at this point. The larger the val-
uesof � , thehigherthephoto-consistency error, sothesur-
facewhich matchesthegiveninput databestis a minimum
of this energy functional. Becauserefractionoccursfre-
quently, thedependency of theerrormeasureon thenormal
is avital partof ourmethod,in contrastto many otherprevi-
ousapplicationsof weightedminimal surfacesin computer
vision.

Thequestionremainshow to correctlychoosetheerror
measure.Ideally, we would want it to be thedifferenceof
themeasuredintensityin every camerawith thetheoretical
intensity, whichwould look somethinglike this:

� nä�ve(s;n) :=
nX

i =1

(I � ;i (s) � I i � � i (s))2 ;

where I � ;i (s) is the ray-tracedimage intensity assuming
surface� , I i is the i th image,and� i the i th camera's pro-
jectionmapping.

While thegeneralideais goodandexactly whatwe im-
plement,in this initial form it facesseveral problems,the
worst of which is that we have to be able to evaluatethe
error function away from the surfacein order to perform
thesurfaceevolution later. Wepostponetheexacttechnical
de�nition to Sect.3, in favor of a discussionof thegeneral
mathematicaltoolswith which to �nd aminimumof anen-
ergy functionalof theform above.

2.3.Level SetSurfaceFlow

Insteadof implementinga surfaceevolution directly, we
will make useof thelevel setidea.We expressthesurfaces
� � for eachparametervalue� � 0 asthezerolevel setsof
a regularfunction

u : R3 � R� 0 ! R; u(s; � ) = 0 , s 2 � � : (2)

Werequireu(�; � ) to benegativeinsidethevolumeenclosed
by � � , andpositiveon theoutside.

As we proved in [4], we arrive at a local minimum of
theerrorfunctionalif we choosea goodinitial startingsur-
face� 0 andevolve this surfaceaccordingto the evolution
equation

@
@�

u =
�
� div

�
� �

r u
jr uj

�
+ div� (� n )

�
jr uj ; (3)

whichwehave to implement.

3. Implementation

In this section,we go into the detailson how to imple-
mentour reconstructionscheme.Subsection3.1 speci�es
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Figure 3. Evaluationof thepartial error function� i for
a singlecamera.. The length diff erence between rays

traced thr ough the distor ted surface � 0 and the undis

tor ted surface � is just ks � vk. Note that n is not

necessaril y the exact surface normal, it may vary close

to it in order to evaluate the deriv ative of � with respect

to the normal.

the constructionof the error function. For a stableevolu-
tion, we have to make surethat thesurfacedoesnot shrink
below theimagesilhouettes.We �nally describetheimple-
mentationof thePDEasa narrow bandlevel setmethodin
subsection3.2.

3.1.Construction of the Err or Function

Of particulardif�culty is theevaluationof theerrorfunc-
tion �( s;n) for a given point s andcorrespondingnormal
n. Theproblemis that this term hasto beevaluatedaway
from thecurrentsurface� in orderto computethederiva-
tives in (3), i.e. for points that do not lie directly on the
surface,andwith anormalwhichmaybedifferentfrom the
currentsurfacenormal.Theparticularquestiononeasksin
thatcaseis what local errorwould ariseif thesurfacewas
distortedsuchthat it lies in s with normaln. For this rea-
son,raytracingin orderto evaluatetheerrorfunctionhasto
be performedfor a distortedsurface� 0. The computation
of �( s;n) is thusperformedin threesteps.

In the �rst step,we constructthe distortedsurface� 0

throughwhichraysaretraced.Wehaveto change� locally
in a reasonablysmoothmannersuchthat the new surface
passesthroughs. At thismoment,wedonotyet careabout
thenormal.Assumefor now thats lies outsidethevolume
V� enclosedby � . Thedesiredresultcanthenbeachieved
by uniting V� with a ball B centeredin thepoint v closest
to s on � , with radiusks � vk. Vice versa,if s lies inside
V� , thenwe canachieve the resultby subtractingB from
V� , Fig. 3.

The secondstep is to de�ne the set of camerasC =
f C1; : : : ; Ck g which contribute to the error measure.Ide-
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Figure 4. The rays used to generate a view from the upper

left direction, visualizing the comple xity of the image for

mation process. Top: resulting 1D view, intensity of each

pix el is propor tional to the length of the yello w segments

for the corresponding ray.

ally, since the medium is transparent,we would like to
considerall cameraswe have available. Unfortunately,
this would require to �nd for eachcamerathe ray pass-
ing from thecameracenterto s, possiblyrefractedmultiple
timeson theway. This computationde�nitely is too time-
consuming.Instead,weonly considerthosecameraswhich
haveagoodenoughunobscuredview of v with regardto the
originalsurface.Moreprecisely, eachcameraCi belonging
to Cmustmeetthefollowing two criteria:

� The straightline from v to the centerof projectionci

mustnot intersect� , and

� The ray starting from v in the refracted direction
� (v � ci ; n) musttravel insideV� in thebeginning. �
is computedusingSnell's law, usingthe index of re-
fractionof waterfor insidethevolume,andof vacuum
for outside.

In the third step, we �nally compute the photo-
consistency error � i for eachcontributing cameraCi and
averagethoseto getthetotal error� . Eachindividual error
is computedasfollows: Let I i � � i (s) be the intensityof
theprojectionof s in imageI i , andr i (s;n) betheaccumu-
latedintensityalonga ray tracedfrom s into the refracted
direction� (s � ci ; n). Then

� i (s;n) := (I i � � i (s) � r i (s;n))2 :

This correspondsto comparingthe imageintensity to the
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Figure 5. Convergence of the results depending on the

number of input views.

ray-tracedintensityof a ray castfrom the camerato s, re-
fractedasif by a surfacelocatedin s with normaln. Thus,
thedesirednormaln is alsocorrectlytakeninto account.

3.2.PDE Discretization

In order to implementthe level setevolution equation,
thevolumesurroundingthesurface� hasto bediscretized.
We use a regular three-dimensionalgrid of evenly dis-
tributedcellswith variablespatialresolutionof usually643

or 1283 cells. Thesurfaceis evolvedaccordingto thenar-
row bandlevel setmethod[13], startingtheevolution with
thevisualhull surface� 0 andthevaluesuxy z

0 of thecorre-
spondinglevel setfunctionu0 in thecentersof thegridcells.
The valuesof the level setfunction areupdatediteratively
usingtheupwindscheme.At iterationstepi + 1, thenew
valuesuxy z

i +1 areobtainedfrom thevaluesuxy z
i of theprevi-

ousiterationstepby adiscreteversionof equation(3) using
an explicit time step. To ensurestability, the stepsize� �
mustbe chosensuchthat the level setsof ui cannotcross
morethanonecell at a time, i.e. satisfytheCFL-condition.

4. Results

4.1.Synthetic2D Experiments

In orderto verify thatoursurfaceevolution is capableof
producingcorrectresultsdespitethe complex problemwe
wantto solve,we �rst testit on synthetic2D data.We ray-
traceseveral views of two differenttestvolumesusingthe
imageformationmodelpresentedin Sect.2.1.The�rst vol-
umeis designedto testhow well thealgorithmcanrecover
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(a) The �rst syntheticvolumetogetherwith 16 input views. Below
eachview is shown thesigneddistancetransform� of thesilhouette.

(b) Thesecondsyntheticvolume,alsotogetherwith 16 input views
andsigneddistancetransformof thesilhouette.

Figure 6. Synthetic test volumes and raytraced views. Red color denotes positive values of signed distance , blue color

negative values.

(a) Convergencetowardsthe�rst testvolume,after0, 100,200,and
300iterations.

(b) Convergencetowardsthesecondtestvolume,after0, 15,30,and
45 iterations.

Figure 7. The best results we achieved using 24 input

views, tog ether with several inbetween stages of the

iteration.

concavities, while thesecondvolumeis not connectedand
hasa mixture of straightandroundedges.Both testvol-
umesandresulting1D viewsareshown in Fig.6. An exem-
plary tracethroughthevolumecanbefoundin Fig. 4. This
tracegivesa glimpseof the complexity of the reconstruc-
tion problem,anddemonstrateshow heavily theray-tracing
resultdependson thenormals.

We run our algorithm with different numbersof input
viewsin orderto testthedependenceof convergenceonthis
critical parameter. The resultsareshown in Fig. 5. Con-
vergencebecomesstablewith eightor morecamerasused,
with twelveviewsrequiredin themorecomplex secondtest
case.Wecanalsonotethatthereis aquicksaturationof re-
constructionqualitywith respectto thenumberof cameras.
The visual hull doesnot improve muchmoreif morethan

16 camerasareused,in accordancewith earlierresults[7].
In addition,thequalityof thereconstructionpeaksataround
24 camerasfor bothtestvolumes.Interestingly, morecam-
erasdonotnecessarilyimply abetterresult,whichindicates
thatagoodplacementof thecamerasis at leastasimportant
astheir sheernumber. Thebestreconstructionresultswere
achieved with themoderatenumberof 24 cameras,shown
in Fig. 7.

In all cases,thealgorithmrunswith thesameparameter
valuesof � 1 = 0:1 and � 2 = 100. It exhibits a very sta-
ble behaviour againstparameterchanges,asthe following
tablesuggests.Here,24 Camerasareusedfor the estima-
tion of the�rst testvolume,andtheerrorafterexactly 200
iterationsdependingon differentparametervaluesis noted
down.

� 1

0.01 0.1 0.5 1 5
1 0.07 U U U U
10 0.05 0.04 0.06 U U

� 2 50 0.16 0.07 0.03 0.04 U
100 0.04 0.05 0.04 0.06 U
1000 S S S S 0.03

As aruleof thumb,thereis acertainthresholdvaluefor the
speeduptermabovewhichit acceleratestheevolutionabove
astablelimit, causingthesurfaceto shrinkuncontrolledbe-
low thesilhouettes.This is indicatedby a “U” in thetable.
Too low a choiceof � 1 hasno ill effects on stability, but
slows down theconvergencea bit. � 2 cansafelybechosen
somewherebetween10 and100 without mucheffect, but
maycausethesurfaceto bestuckat anundesireablespotif
settoohigh,asindicatedby the“S” in thetable.

4.2.Realworld Water Videos

For thereal-world tests,weuseamulti-videostudiocon-
sistingof 8 CCD-cameraswith a resolutionof 1004� 1004
pixels.Thecamerascanrecordata frame-rateof 45 frames
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Figure 8. Reconstructed stream of water placed in a vir 

tual envir onment. Left: Turning water into wine  we

chang ed the material proper ties of the water suc h that it

resemb les red wine . Right: Closeup of the water sur 

face, sho wing the details of the reconstructed geometr y.

persecond.A 300W UV light sourceis employedto illumi-
natetheFluorescein-dyedwater. Weacquiretestsequences
usingadarkstudio,theexcitationlight sourceandthe�uo-
rescentwaterbeingtheonly sourceof light. This measure
allows for simplebackgroundsubtraction.Thereconstruc-
tion is performedon an equidistant,uniform grid of 1283

voxels. An exampleof a reconstructedwatersurfaceren-
deredin a virtual environmentandwith changedmaterial
propertiesis shown in Fig. 8.

5. Summary and Conclusions

We have presenteda methodfor the reconstructionof
�o wing water surfacessuitablefor free-viewpoint video.
A novel recordingmethodologyand a correspondingim-
ageformationmodelallow usto de�ne aphoto-consistency
constraintonthereconstructedsurface.Weutilize weighted
minimal surfacesto re�ne the visual hull of the waterus-
ing constraintsbasedonthicknessmeasurementsof thereal
surface.Theresultingenergy functionalis minimizedusing
theEuler-Lagrangeformulationof theproblem,leadingto
apartialdifferentialequation.ThisPDEis solvedby apply-
ing the well known level setmethod. Synthetictestsindi-
catethat thesolutionof theequationis stable.Real-world
testsdemonstratethe suitability of our methodfor the re-
constructionof water.

Our Futurework includesresearchinto the applicabil-
ity of our methodto the reconstructionof other refractive
media.Additionally, we would like to developa hierarchi-
cal representationof the underlyingcomputationalgrid to
achieve a higherresolutionreconstructionwhich allows to
resolve �ner details.
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