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Abstract

This paper deals with simultaneous depth map estimation
and background separation in a multi-view setting with sev-
eral fixed calibrated cameras, two problems which have
previously been addressed separately. We demonstrate that
their strong interdependency can be exploited elegantly by
minimizing a discrete energy functional which evaluates
both properties at the same time. Our algorithm is derived
from the powerful “Multi-Camera Scene Reconstruction via
Graph Cuts” algorithm recently presented by Kolmogorov
and Zabih. Experiments with both real-world as well as
synthetic scenes demonstrate that the presented combined
approach yields even more correct depth estimates. In par-
ticular, the additional information gained by taking back-
ground into account increases considerably the algorithm’s
robustness against noise.

1. Introduction

The reconstruction of the 3D-geometry of a scene from mul-
tiple views remains a challenging problem in computer vi-
sion. It has been approached from several points of view,
one of which is energy minimization. Until recently, it was
not feasible to make use of its theoretical advantages in
practice, since minimizing an energy functional is usually
NP-hard. Recently, however, algorithms have been devel-
oped to overcome this drawback. One class of methods for-
mulates the problem in terms of level sets and uses numer-
ical techniques to obtain a local minimum as the solution
of a set of PDEs [1, 5]. We follow a different approach,
in which the energy functional is discrete, and graph cuts
are employed iteratively to successively reduce the energy.
Many vision problems have been treated successfully with
this kind of energy minimization, including stereo and mo-
tion [2, 3, 7, 14, 15] and voxel occupancy [19]. Evaluations
of stereo algorithms using real images for which true dense
depth information is known indicate that minization algo-
rithms based on graph cuts yield very good results [16, 20].

Kolmogorov and Zabih introduced a fairly general class of
energy functionals for which they proved that it is possi-
ble to minimize them via graph cuts [10]. They used this
mathematical framework in [9] to construct an algorithm
for multi-camera scene reconstruction which performs very
well with real imagery.

On the other hand, the separation of the foreground of a
scene from a known background is another important pre-
requisite for several interesting vision algorithms. In partic-
ular, the computation of the visual hull relies entirely on
object silhouette information [11, 12]. The kind of sep-
aration we have in mind is most closely related to video
matting techniques, several of which are widely used. The
blue screen method and multi-background matting rely on
backgrounds with special mathematical properties and re-
quire a tightly controlled studio environment to be succes-
ful [13, 18]. A common method in production is rotoscop-
ing, where the user is required to draw curves around the
foreground elements himself, assisted by several tools like
automatic adherence of the curves to image contours, or the
tracking of curves over time [4].

Our approach falls into a third category which uses clean
plates, images of the static background of the scene. Meth-
ods to date obtain the foreground by subtracting or separat-
ing the known background from the current frame. Opaci-
ties are assigned to color differences at each pixel via some
user-defined mapping [8]. It depends on statistically derived
threshold values, and fails in regions where the foreground
is similar in color to the background, mostly because it does
not take into account spatial coherence.

Clearly, 3D-reconstruction as well as background sepa-
ration could benefit greatly from a known solution to the
respective other problem: If the static background pixels in
an image are known, then these pixels must have the same
depth as the background, while all other pixels must be less
deep. On the other hand, if we know the depth of each pixel,
then only pixels with a lesser depth than the background can
belong to the foreground.

In the following sections we describe an algorithm which



exploits this interdependency by addressing both problems
simultaneously, assuming that we have a set of fully cali-
brated cameras and an image of the static background for
each camera with at least approximate per-pixel depth in-
formation. We present a generalization of the successful
multi-view reconstruction algorithm from [9]. Pixels are
not only labeled by their depth, but also by an additional flag
which indicates whether a pixel belongs to the background
or not. As in the original method, the result of our depth
reconstruction and background separation algorithm is ob-
tained as the minimum of an energy functional. Besides tak-
ing into account classical contraints from multi-view stereo,
it regards the new considerations related to background as
well.

Sect. 2 outlines the problem we want to solve precisely
and introduces the notation which is used throughout the
rest of the paper. The energy functional we minimize is
defined in Sect. 3, while Sect. 4 is devoted to the method
of graph cuts, which is used to perform this minimization.
There we also give proof that this method is applicable to
our energy functional. Results we achieve by applying our
algorithm to real-world as well as synthetic data are demon-
strated in Sect. 5. Finally we conclude with a summary and
some ideas for future work in Sect. 6.

2. Reconstruction Algorithm

We aim at reconstructing the 3D-geometry of a static scene
captured by a number of calibrated cameras directly from
the images. The goal is to retrieve depth maps, assigning a
depth value to each pixel which defines its location in 3D-
space. Simultaneously, we want to decide for every pixel
whether it belongs to the background of the scene, known
from background images captured with the same cameras.
We assume that the depth of each pixel in the background
images can be estimated at least approximately. Pixels be-
longing to objects present in the current image but not in the
background image shall be tagged as foreground.

Our algorithm is a true generalization of the multi-
camera scene reconstruction via graph cuts described in
[9]. It shares all of its advantages:

e All input images are treated symmetrically,
o Visibility is handled properly,

e Spatial smoothness is imposed while discontinuity is
preserved.

While our energy functional is different, we utilize a similar
problem formulation and notation, which we introduce now.

Input: The input to the algorithm is the set of pixels
Py, from each source camera & together with the following
mappings for every pixel p € P := |J,, Pi:

I(p) The color value of the input image.

AI(p) The value of the (discretely evaluated)
Laplacian of the input image.

B(p)  The color value of the background image.

Output: The goal is to find the “best” mapping
A:P — £ into a set of labels £. The precise definition
of “best” is given later. To each pixel is assigned a label
[ = (I4, ), which is a pair of values. This is our first gen-
eralization: Labels not only encode depth, but also the new
property of “backgroundness”. The boolean value [; is true
if and only if p is a background pixel, while [; denotes the
depth of p.

As is done in the original algorithm [9], the notion of
“depth” we use is a somewhat abstract one: Depth labels
correspond to level sets of a function D : R® — R satis-

fying

o For all scene points P,Q € R® and all cameras k:

PoccludesQ ink = D(P) < D(Q).

This is obviously a very natural requirement for a function
indicating depth. The existence of such a function D im-
plies that there is a way to define depth globally, i.e. inde-
pendent of a specific camera. The same constraint is postu-
lated in the original algorithm [9] as well as in voxel color-
ing [17]. An important special case in which the constraint
is automatically satisfied occurs when all cameras are lo-
cated on one side of a plane P looking at the other side.
The level sets of D can then be chosen as planes which lie
parallel to P.

Topology: The definition of the algorithm includes the
topological properties of the input images. A set-theoretic
description is given by assigning to every p € P the follow-
ing sets of pixels:

N, A set of neighbors of p in P, excluding p
where the energy functional will encourage
continuity.

Cp, A neighborhood of p including p. These
regions will later be relevant for the com-
putation of normalized cross correlations
which are used as a criterion for photo-
consistency.

Geometry: Finally, the geometric relations between pix-
els in different images with regard to their current labels and
the camera positions must be specified. We encode these in
the set J of interactions. First note that a pixel p together
with a label [ corresponds to a point in 3D-space via the pro-
jection parameters of the camera. This point is denoted by
(p, ). The interactions now represent a notion of “nearness”
of two 3D-points in the following sense, Fig. 1:
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Figure 1: Interactions and Occlusions. The 3D-points {p, I)
and (g, [} interact, thus {{(p,1),{(g,[)} € J. On the other
hand, (g, ') is occluded by (p,[) in its camera image, so

{p,1), (g, 1)} € O.

e Anpair {(p,1),{g,1)} belongs to J if and only if

1. g € Py, and p ¢ Py, i.e. pand g must come from
two different cameras.

2. q is the pixel nearest to the projection of (p,[)
onto the image of camera k.

Note that interacting pixels always have the same label.
In particular, foreground can only interact with fore-
ground, background only with background, and both
pixels must belong to the same level set of D.

The set © of occlusions will be used to enforce visibility
constraints. It also contains pairs of 3D-points and is de-
fined as follows:

e A pair {{p,1),{g,I')} belongs to O if and only if
{{p,1),{(g,1)} € Jand I; < [, Geometrically this
means that if (p, [) is projected onto g, then it will oc-
clude ¢ if and only if the depth assigned to p is smaller
than the depth assigned to q.

Energy minimization: As stated before, the algorithm
tries to find the “best” labelling A of pixels. Mathematically
speaking, the best configuration corresponds to the one that
minimizes an energy functional E()). This functional en-
codes the high level knowledge about scene reconstruction:
Unlikely or impossible assignments of labels must be pe-
nalized, while very likely configurations must be enforced.
A precise definition of the energy functional we use is given
in the next section.

3. The Energy Functional

The energy functional which is minimized by the algorithm
can be written as a sum of contributions by every single
pixel and every possible pair of pixels:

EQ) = 3 [BiN) + BEGhm() + BRI
p,qEP

+ta Z Ebpackground()‘) .
pEP

The terms on the right hand side will be different from zero
only if p and ¢ interact or occlude each other in certain con-
figurations, or if p and g are neighbours. Thus, the sum runs
in effect only over relatively few pairs of points, which is of
course very important for fast performance of the algorithm.
The positive weights « and S are the only free parameters
of our method. Good choices will be specified in Sect. 5.
The goal of the graph cut algorithm in Sect. 4 is to find an
assignment X of labels to all pixels that is a local minimum
of E in astrong sense.

We now give a detailed description of the four contribut-
ing terms.

3.1. Photo-consistency term

For interacting pixels sharing similar characteristics, we is-
sue a photo-consistency bonus. This reflects the fact that if
a 3D-point is projected onto a pixel p in one image and a
pixel g in another and is visible in both images, then pixels
in the neighbourhoods C,, and C, should be similar. Mathe-
matically, we set

pa vy . ) —C@a) iT{{p,A(p)),{g,A(9))} €7,
oY) = {0 otherwise.

The correlation term C(p,q) € [0,1] must be small if C,
differs from C, and large if the local pixel neighbourhoods
are very similar. We found experimentally that a very good
criterion is the statistical measure obtained by computing

e The normalized cross-correlation® between the sets of
color values I (C,,) and I (C,), taking the minimal cor-
relation among the three color channels, and

e The normalized cross-correlation between the sets of
Laplacians AT (C,) and AT (C,), again computing the
three color channels separately and taking the mini-
mum.

A weighted average of these two values is then assigned to
C(p, ¢). In both cases the neighborhoods we use are square
3 x 3 pixel windows surrounding the points.

1Cross-correlations in our sense are always positive numbers. If the
result from the computation is negative, it is set to zero.



Indeed, this scheme has theoretical advantages as well.
Especially in real-world data, correlations are much more
robust than some kind of distance measure between the
color values: Stereo images taken simultaneously by differ-
ent cameras often have significantly different color values
even for corresponding pixels, because the response of the
cameras to the same signal is not identical. This effect can
be somewhat reduced by careful calibration, but it remains
a principal problem. Since correlation measures statistical
similarity, not absolute similarity in values, it yields more
reliable results even with uncalibrated images. This is espe-
cially true for neighbourhoods containing edges, which are
generally more easily matched.

To further encourage that image features like edges and
corners are matched with their counterparts in other images,
we include the correlation of the Laplacian of the image into
C(p, q). Small additional improvements in quality can also
be achieved by matching other characteristics like partial
derivatives or even the coefficients of local Fourier expan-
sions, but possible benefits are found to be very small when
compared to the increase in computational cost.

3.2. Smoothnessterm

Drastic changes in depth or transitions from background to
foreground are usually accompanied by image features. We
transfer this simple observation into the smoothness energy
ERd n(A) == VPI(X(p),A(g)), where VPI(LI') :=

'smooth
{0 ifgg N,orl="r,

2Lmax — [|AI (P)||loo — ||AI(g)|lcc Otherwise.

If the pixels are neighbors, it penalizes changes in depth or
“backgroundness” if image colors vary only slightly in the
neighborhood of p or ¢q. We enforce smoothness only in
the four nearest neighbors, of which the set V,, consists in
our case. The Laplacian of the image is used as a simple
edge detector. Exchanging the Laplacian for a more so-
phisticated edge detector is, of course, conceivable. The
maximum norm in the above definition denotes the maxi-
mum of all color channels, so a change in any channel is
sufficient for the presence of a feature, which is a natural
assumption. Ly is the largest possible absolute value for
the Laplacian, which depends on color encoding and level
of discretisation. It is thus assured that EX:Z . (X) > 0, an
intuitive requirement since discontinuity should never result
in an energy bonus, but which is also important for technical
reasons described in the proof later on.

3.3. Vigbility constraints

Certain configurations of labels are impossible because of
occlusions. If camera j sees pixel p at depth [4, and the
projection of {p, I) into another image is pixel ¢, then it is of

course not possible that ¢ has a larger depth than p. These
illegal configurations are precisely the ones captured by the
set of occlusions, so we forbid them by assigning an infinite
energy

oo if {{p, A(p)), (g, A(9))} € O,
0 otherwise.

Eis(A) = {

3.4. Background term

For the classification of pixels as background pixels we
again use normalized cross-correlations Cy(p), this time
computed between the ordered sets of image colors I (V)
and background colors B (N,,). We penalize good correla-
tions of the image values with the background values if A
does not classify p as a background pixel. A second con-
straint is the background depth: If Ay(p) = true, i.e. p be-
longs to the background, then p must have the same depth
ba(p) as the background. This results in the following for-
mula:

Cy(p) if X(p)y = false,
00 if X\(p)p = true

Efackgrond(A) = and A(p)q # ba(p),
0 otherwise.

In image areas with few texture information, it is often the
case that the correlation Cy(p) is low even if p is really
a background pixel. For this reason we do not penalize
low correlations when the current labelling A classifies p
as background.

In the following section we reference an algorithm which
efficiently computes a local minimum of the energy func-
tional defined above.

4. Energy Minimisation

In this section we give a formal proof that graph cuts can be
used to find a strong? local minimum of our energy func-
tional. The algorithm works by iterating over all labels, de-
ciding in each step which pixels have to be changed to the
current label in order to reduce the energy. One can start
with any valid configuration A with E()\g) < oco. An ob-
vious choice is to set each pixel to the maximum possible
depth and tag it as foreground. Since the energy is always
reduced and impossible configurations have infitine energy,
only valid configurations can be generated. We will now
investigate a single step of the iteration in more detail.

Let A be the current label configuration of all pixels and
a the current label considered. Any set of pixels A C P

2ustrong” in the same sense as in [3]



determines a new labelling A 4,q via an a-expansion: Set
foreveryp € P

a ifpe A,

Aalp) = {)\(p) otherwise.

The goal of each step is to determine A4, i.e. the set of pix-
els to be assigned label a, such that the energy becomes
smaller if at all possible, otherwise it should stay the same
— formally we want E(A4,q) < E(X). A very efficient al-
gorithm achieving this uses graph cuts and is described in
detail in [10]. We do not repeat this construction here and
only prove that it can be applied to our case.

First the energy funcional must be rewritten in a way
which captures energy changes during the possible a-
expansions. Therefore we number the pixels in P,

P = {p17"'7pN}7

and define for each ¢ = 1,..., N a function of a binary
variable

a ifr=1
A(p;) otherwise.

0;:{0,1} = £, oy(x) = {

We can now define an energy E g depending on N binary
variables which encode whether the label of the correspond-
ing pixel is changed during the a-expansion or not:

Ek’a : {0, ].}N — ]R,
Eya(x) == E(o1(x1),-..,0n(zN))-

The task of finding the set A is then equivalent to the task
of finding a vector z € {0, 1}¥.

In consideration of Theorem 3 in [10], it is sufficient to
prove the following lemma for the energy functional E de-
fined in the last section.

Lemma. Determine functions E? and E*J of one or two
binary variables, respectively, such that for all z € {0, 1}

Bxa(z) = Y Eiw) + Y, EY(wi,a))
1<i<N 1<i<j<N
Then each term E%J satisfies the condition

E"(0,0)+ E*(1,1) < E"(0,1) + E*(1,0).

Proof. Since only terms depending on a single point or a
pair of different points contribute to Ej g, rewriting the
functional in the above way is possible. Indeed, it is easy to
verify that the choice of

2E2’J($z,$3) — Epiapj ()\w)+EPi,pj ()\w)_{_EPan()\w)

photo smooth vis
with X\, 1= .
(Pe) { a otherwise,
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Figure 2: Dependence of the depth estimation and back-
ground separation error on the amount of Gaussian noise
added to the image in Fig. 4.

together with the obvious choice for E¢ accomplishes the
desired result and that all expressions are uniquely deter-
mined. The factor “2” stems from symmetry in ¢ and 7,
which is exploited to reduce the number of contributions to
the ones where i < j.

Because of linearity it is sufficient to prove the inequality
for the three different terms of the sum. The visibility term
is the same as in [9], so there remains nothing to prove.
The same applies to the photo-consistency term: Although
ours is different, it is also non-positive, which was the only
condition necessary. Thus we only have to investigate the
smoothness term. Again in view of [9], two conditions are
sufficient:

e VPiPi([ 1) = O for any label [ € £, this is obvious by
definition.

e The triangle inequality: for all labels [, € £,
VPoPi (1) < VPOP ([ a) + VPP (a,1).

Suppose it was wrong, then a necessary consequence is
VPepi (1) # 0, VPP (,a) = 0 and VPiPi(a,I') =
0. But this implies [ # [ as well as [ = a = [, which
is a contradiction.

The argumentation now proceeds as in the original proof [9,
Sect. 4.2]. O

5. Results

We first test the quality of the depth maps computed by
our method in conjunction with our real-time dynamic light
field rendering application [6]. The system is capable of



rendering scenes from novel viewpoints inside the window
spawned by the cameras. The quality of the rendering
mainly depends on good per-pixel depth information. We
use data from the Stanford light field camera, a 3 x 2 array
of CMOS imagers with parallel optical axes [21]. The cam-
eras are relatively far apart in our examples, which makes
3D-reconstruction more difficult due to the large disparity
range from 3 to 34 pixels at an image resolution of 320x 240
pixels. There are also dissimilarities in the color reproduc-
tion of the cameras, as well as artifacts due to MPEG com-
pressiong during acquisition, imposing a further challenge
onto color matching.

Fig. 3 depicts a frame of the sequence and the static
background from one camera as well as the results from
depth estimation and background separation. We extended
our original rendering algorithm to make use of the addi-
tional background separation. It now renders first the con-
stant background from the novel viewpoint, and then splats
the foreground onto it. This method results in sharper edges
and little bluriness in the final result. The overall sharpness
in our rendering results indicates that the depth maps are in
most areas very accurate, since each pixel is the result of a
blending scheme where the two source images are weighted
equally.

For a more formal verification of our method, we ren-
der a complex synthetic scene from four different view-
points and use the Z-Buffer to obtain true per-pixel depth
information. We run our algorithm to reconstruct depth and
background information and compare the outcome with the
known ground truth. Fig. 4 shows an image of the scene
and some of the results. The reconstruction error is defined
as the percentage of pixels for which a depth value is com-
puted that is off by more than one pixel in disparity. Re-
sults from the new algorithm with background separation
are compared to results with background separation turned
off in order to demonstrate the benefits of our method in
comparison to [9], Fig. 2. In the case with background sepa-
ration, the percentage of pixels which are wrongly classified
as background or foreground is also determined.

To verify the robustness of our algorithm, we perturb the
color values of the input images with a preset amount of
noise. To each color channel in each pixel we add a ran-
dom number from a Gaussian distribution with mean zero
and standard deviation o. Here the true strength of our al-
gorithm becomes evident. The residual error is already al-
most halved when compared to the original algorithm in
the noiseless case, but the results of our new method re-
main well below 5% error even when a significant amount
of noise is introduced. For the final case of o = 15, the
results from the algorithm without background separation
are almost useless, while our algorithm quite robustly gives
only 4.9% faulty assigned pixels.

Both methods are running using optimal parameters,

which are found to be the same in both cases - we exper-
imentally determined o = 0.6 and 8 = 0.4. Fig. 4 displays
the result of our reconstruction with a noise standard devia-
tion of o = 5. Disparity values range from 2 to 20 pixels.
After 30 seconds of one-time initialization to precom-
pute all correlations, one full cycle of iterations over all la-
bels takes 65 seconds on a 1.8GHz Pentium Ill Xeon. We
found that usually about four cycles are needed for conver-
gence to the final result, so it takes a total amount of 290
seconds to compute all data for four 320 x 240 pixel im-
ages. Note that the number of labels and thus the iteration
time is halved when background separation is turned off.

6. Summary and Conclusions

We have presented a homogenous approach to simultaneous
3D-reconstruction and background separation from multi-
ple views of the same scene. Our results clearly demonstrate
that a joint solution benefits both problems: The continous
background feedback from the current estimate improves
the reconstruction and vice versa.

Moreover, it is a natural generalisation of an already very
successful reconstruction method based on minimising a
discrete energy functional via graph cuts. Existing code can
be easily adapted to include background separation. Addi-
tionally, we provide a Linux implementation of the method
and all necessary data to reproduce the examples on our web
page [22].

Since the algorithm is extremely flexible, it should be
possible to incorporate even more visual clues into its unify-
ing framework. Our future work will include investigating
how to exploit temporal coherence in video streams to fur-
ther improve the reconstruction, as well as work on lifting
the current constraints on camera geometry.
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Figure 3: Top: Scene image and background image captured by a CMOS camera. Bottom: The reconstructed depth labels
and the detected foreground.

23,

Figure 4: Top-left: Synthetic scene: This is the position right before the famous combination in the Immergriine Partie,
Anderssen-Dufresne 1852. White to move and checkmate. Top-right: Result of the background subtraction. Bottom: Re-
constructed depth labels and the distribution of the residual depth error compared to the known ground truth. The amount of
Gaussian noise added is set to o = 5.



