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Abstract

We present a fully convolutional autoencoder for light
fields, which jointly encodes stacks of horizontal and verti-
cal epipolar plane images through a deep network of resid-
ual layers. The complex structure of the light field is thus re-
duced to a comparatively low-dimensional representation,
which can be decoded in a variety of ways. The differ-
ent pathways of upconvolution we currently support are for
disparity estimation and separation of the lightfield into dif-
fuse and specular intrinsic components. The key idea is that
we can jointly perform unsupervised training for the au-
toencoder path of the network, and supervised training for
the other decoders. This way, we find features which are
both tailored to the respective tasks and generalize well to
datasets for which only example light fields are available.
We provide an extensive evaluation on synthetic light field
data, and show that the network yields good results on pre-
viously unseen real world data captured by a Lytro Illum
camera and various gantries.

1. Introduction
Light fields have a complex, heavily redundant structure.

In their two-plane parametrization [24], they are given as a
dense, regularly sampled 2D grid of so-called subaperture
views of a scene. When fixing a single vertical or horizon-
tal line in the image plane and moving through the space
of view points in the same direction, one obtains 2D slices
in this four-dimensional space, which are called epipolar
plane images (EPIs), see Figure 5. For scenes with purely
diffuse reflection, these exhibit patterns of oriented lines of
constant color. Each of these lines corresponds to the pro-
jection of a single 3D point in space, and its slope, called the
disparity, is inversely proportional to the point’s distance to
the observer. Discontinuities in the pattern are caused by
occlusions, as they cause transitions between multiple ori-
entations at the occlusion edge [40], see Figure 2.

The situation also becomes less straightforward when re-
flection or glossy, non-Lambertian surfaces come into play,
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Figure 1. Our network jointly separates an input light field into
diffuse and specular components, and computes a disparity map
for the center view. This figure shows output on a previously un-
seen light field rendered with Blender.

as the EPIs then show superimposed patterns [19]. The ori-
entation of the patterns corresponding to specular reflection
does not correspond to disparity, but the specular flow di-
rection, which depends on the intrinsic surface geometry.
To distinguish between those two cases, one must know
if a point exhibits diffuse or specular reflection. On the
other hand, with known geometry, the specular flow can be
directly estimated and reflection components can be sepa-
rated [34]. In case that both shape and reflectance are un-
known, it is hardly possible to tell which phenomena gave
rise to a particular EPI.

Nevertheless, EPIs from natural light fields exhibit an
overall regular structure, and it seems likely that they form



Figure 2. The four images to the left show, from left to right, the center view of the input light field, the diffuse component, the specular
component (scaled for better visibility) and the disparity. The EPIs to the right are all taken from the same scan line in the light field,
marked white. From top to bottom, they again show the input, the diffuse component, the specular component and the disparity. Since the
diffuse component and the disparity correspond to the same projections of the same 3D points, they share the same pattern. However, the
specular component behaves differently, as it follows the specular flow [34], which depends on the local surface geometry and view point
change in a complex way. In particular, the orientation of the specular lobe in the EPI is different from that of the diffuse texture.

a comparatively low-dimensional manifold within all of
epipolar plane image space. Furthermore, encoding an EPI
well with only a few parameters is related to the difficult
interrelated tasks, such as disparity estimation or separation
of diffuse and specular components. Intuition suggests that
if you learn how to do compression well, you will be able
to better succeed at the other tasks. The idea of this pa-
per is therefore to learn a low-dimensional representation
of EPIs from arbitrary example light fields, but in a way
that the latent variables can be used jointly to accurately
solve various supervised tasks in light field analysis. For
this, we propose an encoder-decoder neural network based
on the concept of deep auto-encoders [14], which recently
have been highly successful in finding meaningful manifold
representations [28, 15].

Contributions. We introduce the first network archi-
tecture to jointly solve disparity regression and reflectance
separation in light fields. Our fully-convolutional encoder-
decoder network can be trained both unsupervised to just
learn representations, as well as supervised to solve the
above tasks based on the latent space. We employ 3D con-
volutions to compute features integrated over the whole
range of both vertical and horizontal stacks to deal with
complex occlusions and reflections. The network is trained
on datasets rendered with Blender taken from the bench-
mark [16], as well as a custom random light field generator
which in theory can synthesize an arbitrary amount of train-
ing data for reflection separation as well as disparity estima-
tion. Currently we use dataset of 175 light fields, and will
share rendering scripts and network code. We demonstrate
in extensive comparisons that our method quantitatively and
qualitatively outperforms existing light-field methods for
diffuse and specular separation, and can robustly compute
depth for highly specular scenes.

2. Related work

Encoding light fields. From the first introduction of
light fields for image-based rendering [6, 25], light field
compression has been an important topic due to the huge

amount of data which needs to be stored. Early on, it has
been noted that estimating disparity is necessary to exploit
the redundancies in the different viewpoints [26]. This can
be turned around, and sparse coding actually been used as
a tool for disparity estimation - similar in spirit to what we
are proposing here. In [11] they use the idea of redundancy
of sub-aperture views and used sparsity of the RPCA as a
new matching term. Likewise, [29] employ sparsity ideas
to model light field patches as Gaussian random variables
conditioned on its disparity value. They construct a patch
prior and can estimate disparity by finding the nearest PCA
subspace. In [19], EPI patches are encoded with a dictio-
nary of patches with known slope, such that the coding co-
efficients give a disparity estimate. Notably, this method
can recover disparity for multiple layers of a scene. Sparse
coding is also used for compressive light field photogra-
phy [27], which reduces the amount of data to be captured.
Both sparse coding and low-rank constraints are also key to
modern light field compression schemes [3, 18].

However, the idea of an auto-encoder we employ in this
work is in some sense the exact opposite to sparse cod-
ing: instead of finding an overcomplete basis and represent
patches with a sparse vector in a high-dimensional space,
we want to find the best low-dimensional coding directly.

Reflection separation. The dichromatic reflection
model proposed by Shafer [30] decomposes an input scene
into diffuse and specular components. Based on this, [46]
considers specularity removal as an image denoising prob-
lem and solves it with bilateral filtering. In [37, 36], Tan and
Ikeuchi devise a method based on pure chromaticity analy-
sis without any geometrical information. Kim et al. [21]
used the fact that the dark channel can provide an approxi-
mately specular free image. In [1], Akashi and Okatani use
sparse non-negative matrix factorization to jointly estimate
body color and separate reflection components.

What makes reflection separation from a single image
particularly difficult is that specularity is a view dependent
phenomenon, and can hardly be recognized from a single
view point. With multiple views available, changes in ob-
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Figure 3. A single residual block of the network. After batch
normalization, a first path leads through a (possibly strided) con-
volution layer and a leaky ReLU. A second path either keeps the
input, or passes it through a strided convolution in case it needs to
be resampled. Both paths are added together to produce the final
output. The idea is that it is much easier for such blocks to learn
the identiy transformation, or perform only small modifications to
the input [10], which helps the encoder-decoder paths to gradually
add details.

ject appearance can be tracked with respect to the viewing
angle, which significantly simplifies the task of reflection
separation. The behavior of specularity in static scenes with
a moving camera is described by Swaminathan et al. [35].
They show how motion of specularity depends on object ge-
ometry and light source position, and propose a technique
for specularity extraction from an image sequence.

Recent works by Gryaditskaya et al. [8] and Sulc et
al. [34] explore the light field structure to edit appearance of
specularity and estimate diffuse and specular components.
Tao et al. [38] adapt the dichromatic reflection model to
light fields and propose a depth estimation and specular-
ity removal algorithm. Criminisi [4] studies the behavior
of diffuse and specular components in EPIs and proposes
several reflection separation techniques.

Neural networks for light field analysis. Deep neural
networks are employed for all of the above tasks includ-
ing light field analysis. Wang et al. [41] aim at material
classification. They explore different light field representa-
tions that can be used to train a convolutional neural net-
work. Heber and Pock [12, 13] apply an encoder-decoder
architecture on 2D EPIs and later 3D EPI stacks to estimate
depth. Kalantari et al. [20] and Srinivasan et al. [33] intro-
duce view synthesis algorithms, which recover light fields
from a sparse set of images or a single view. In a simi-
lar vein, [9] obtain compressive light field reconstructions
from single coded 2D images using a joint autoencoder and
4D-CNN architecture. Recently, deep networks were also
successfully applied for inverse rendering and intrinsic im-
age problems [23, 31]. In contrast to the above approaches,
our architecture is not limited to a single task, but can be
trained to perform several of these jointly by implementing
different decoder chains.

Figure 4. The pathways of our deep encoder-decoder network are
organized in six groups of three residual blocks each. The first two
blocks in each encoder group keep depth and resolution the same,
the last block reduces resolution (shown on bottom, viewpoint ×
spatial coordinates), while increasing feature depth (shown on top)
by 32. The decoder paths are exact mirrors of this chain. Disparity
is only a 2D decoder, where the view point dimension of the shape
is removed. To not overly clutter the figure, the visualization does
not show that the encoder and 3D decoders actually operate on
two EPI stacks in parallel, the horizontal and vertical one. The
feature output of these is briefly joined on the bottom layer, and
then decoded again into two separate chains.

3. Proposed network architecture

The key idea is to build the network around an auto-
encoder, so it can be trained unsupervised using just raw
light fields. However, we add multiple pathways to de-
code the latent representation, which can be trained jointly
with the autoencoder in a supervised manner, depending on
which data is available in the current training example. Due
to the combination of supervised and unsupervised train-
ing, we can make sure that the latent representation is both
tailored to the desired tasks, such as depth reconstruction
or intrinsic component representation, but can also gener-
alize well to datasets for which no training information is
available for these tasks. When the network is deployed,
all decoder chains can be evaluated using just the light field
data.

Encoder pathway. The input to the network is a pair
of epipolar volumes, one sliced horizontally, the other one
vertically, see Figure 5. Input patches are 48×48 RGB with
a depth of nine views, larger light fields are segmented into
these patches, so that our network can deal with lightfields
of any shape.

The basic ingredient for the encoders and decoders are
residual blocks. To decrease resolution, we employ strided
convolutions instead of max-pooling, so the network is fully
convolutional. See [10, 32] for justifications of this archi-
tecture. The residual blocks have a very simple structure
and allow direct pass-through of the (batch normalized) in-
put, see Figure 3.

In the encoder pathway, 18 residual blocks are chained



Figure 5. Visualization of horizontal (left) and vertical (right) EPI stacks used as input to our network. To achieve the actual spatial input
resolution of 48 × 48, they need to be cut out from the above epipolar volumes. Note that although both stacks are three dimensional,
they use images along different directions of view points. In effect, those two stacks assemble a crosshair of views around the center view,
which is thus the only view present in both stacks.

together. Every third one reduces the patch resolution via
strided convolution while increasing feature depth, with the
overall goal of gradually reducing dimensionality. The final
output has shape 3×3×3×192, for an overall reduction of
the input to around 8.3% of its original size, see Figure 4.
Horizontal and vertical epipolar volumes are encoded sepa-
rately. As they have the exact same structure, we have them
share the same filter kernels to reduce the number of net-
work parameters. Since pathways like depth reconstruction
require information from both horizontal as well as vertical
epipolar volumes, their feature output at the representation
level is concatenated. This is the final output of the encoder,
and the bottleneck of the network.

Decoder pathways and output. After passing the
bottleneck, the low-dimensional representation is decoded
again by a chain of residual layers. The latent variables en-
ter different decoder pathways. In this paper, we implement
the auto-encoder path to reconstruct the input, two decoders
for the diffuse and specular components, and a separate de-
coder for the disparity map. All decoder pathways use trans-
pose convolutions to exactly revert the encoder on the cor-
responding level. However, the only link between them is
through the latent representation, see Figure 4.

Lightfield, diffuse and specular components are recon-
structed for the 17 = 9 + 9− 1 views in a crosshair around
the center view, see Figure 5. The disparity map is com-
puted for the center view only. We employ the dichromatic
reflection model [30], whose adaptation to lightfields was
discussed in detail in [38]. According to this model, the
specular component is assumed to be independent from the
diffuse one, which justifies the use of two separate decoder
chains. However, they should also sum up to the input light
field. To let the network better cope with this constraint, we
append specular features to the diffuse ones and vice versa,
but only for the input to the final layer. As disparity out-
put is only 2D, we reduce the filter shape by the respective
dimension. When tiling the output back together, we use
overlapping patches and extract only the central 16 × 16
pixels, as data closer to the center is more accurate.

4. Network training

4.1. Training data

As input data for our algorithm we use a variety of pub-
licly available datasets [45, 39, 16, 43] as well as scenes
specifically created for the purpose of reflection separation.

4D light field benchmark [16]. The light field bench-
mark [16] offers 28 light fields rendered with Blender with
ground truth disparity available. Their composition varies
substantially, with many different materials, lighting con-
ditions, and fine structures with complex occlusions. Their
center view resolution is 512×512, but here and for all other
datasets, we use only completely valid patches for training,
in the sense that pixels shifted by their disparity always lie
within all of the views. We use 48 × 48 pixel patches for
training with 16 pixels of overlap, skipping a 16 pixel bor-
der region. In effect, this gives 900 training patches per light
field for a total of around 25,200 from the benchmark.

New light fields rendered with Blender. We generate
data for specular and diffuse separation using the Blender
addon provided with [16]. By randomizing scenes, we can
generate a (theoretically) infinite amount of different light
fields to ensure a large variety of data. We designed mul-
tiple scenes containing up to five objects of different scales
and geometric complexity. Texture, the reflective proper-
ties and the environment map for lighting are chosen at ran-
dom. Additionally, we randomly change the position and
rotation of all objects and rotate the environment map, to
prevent overfiting to certain geometries and lighting condi-
tions. To ensure that the network can also deal with purely
Lambertian materials, a certain percentage of objects have
purely diffuse material. In total we used 36 pre-built scenes,
321 textures and 109 environment maps collected from dif-
ferent public sources. The 3D models we use are selected
from Chocofur1 and The British Museum2. We adapted the
material properties to fit our needs and only used the mesh
data.

Lightfields are rendered with the Cycles engine, and we

1http://www.chocofur.com
2https://sketchfab.com/britishmuseum

http://www.chocofur.com
https://sketchfab.com/britishmuseum


L2-loss times 100, validation data L2-loss times 100, training data
Dataset AE diffuse specular disparity AE diffuse specular disparity

Synthetic
Benchmark [16] 0.860 – – 6.114 0.816 – – 5.964
Ours 0.610 1.577 1.511 1.620 0.568 1.456 1.393 1.419

Real-world
Lytro Illum 0.606 – – – 0.574 – – –
Stanford [39] 1.045 – – – 0.919 – – –
HCI [43] 1.230 – – – 1.150 – – –

Average 0.8702 1.577 1.511 3.867 0.8054 1.456 1.393 3.6915

Figure 6. Network losses for different groups of datasets at convergence. The datasets most difficult to fit for the autoencoder are the ones
from gantries, perhaps due to minimally uneven sampling of viewpoints which has not been properly corrected. Depth reconstruction on
our own synthetic dataset is surprisingly easier than for the benchmark datasets, although it has much stronger specularity. However, the
geometry of our objects is also substantially simpler, and the datasets have large regions of easy to fit planes. Overall, disparity MSE on the
benchmark validation is around the current benchmark average, which is 6.29. However, our model is not specifically optimized for depth
reconstruction, and in particular trained for non-Lambertian scenes, on which it can perform much more robustly than competing methods,
see Figure 7.

adapted the addon [16] such that it can output the intrinsic
components. For both diffuse and specular passes, Cycles
outputs the three different components color, direct lighting,
and indirect lighting. Adding the direct and indirect light
and multiplying it by the color yields the desired ground
truth separation. Data is stored in high dynamic range to
circumvent problems with saturated specularities. The size
of these light fields is also 9× 9× 512× 512. The 175 light
fields we use for training contain around 160,000 patches.

Real-world light fields. We have four sources for real
world light fields for which no ground truth data is available.
First, we use light fields captured with the Lytro Illum light
field camera, calibrated and rectified using the light field
toolbox from [5]. The size of the light fields is 9×9×434×
625. We used 11 light fields for training and two for testing,
which results in 10,175 training examples. Second, we have
a dataset built from the Stanford Light Field Archive [39]
with six training data sets which is 6,816 patches, and with
two light fields held back for testing. Third, we captured a
light field using an industrial camera mounted on a gantry
we assembled ourselves. The size of the light field is 9 ×
9× 497× 710 with a disparity range of [−1.5, 1]. The light
field illustrates a non-Lambertian object, illuminated with
approximately white light. Fourth, we use five real world
light fields from the HCI benchmark [43] and we keep one
for testing, which results in 16,016 more training patches.

4.2. Network implementation and training strategy

From the training data, we set aside 5% for a validation
set. Several light fields are also completely held back, and
used only for testing, see above for details. We implement
the network using Tensorflow in Python3, and train on an
Intel Core i9 system with four nVidia Titan Xp, with the en-
coder/decoder chains distributed to different GPUs to sat-
isfy memory requirements for training. All decoders are

trained with an L2-loss. In case a dataset does not pro-
vide ground truth for a certain pathway, that path is dis-
abled during training. The autoencoder path can always be
trained. Weights are initialized using the same strategy as
for residual networks [10]. Stochastic optimization using
the Adam optimizer [22] for twenty epochs of training data
took roughly five days, after which loss for all pathways
remained stable. The final losses over training and valida-
tion set are shown in Figure 6. While there is of course a
slight gap between training and validation, performance on
unseen data is not significantly worse, so overfitting does
not seem to be an issue here.

Reconstruction of a single pathway during evaluation re-
quires roughly 7 seconds on the above system for a light
field with a center view resolution of 512 × 512, including
tiling of the input light field, all transfers from CPU to GPU
and back, and reassembling the output from the patches.
The complete specular/diffuse decomposition with dispar-
ity estimation takes 19 seconds. We verify the quality of re-
flection separation and disparity estimation in detail in the
next section.

5. Results

We compare our reflection separation with two algo-
rithms designed for light fields. The first one by Sulc et
al. [34] performs reflection separation based on specular
flow. The second one is by Alperovich et al. [2] and per-
forms intrinsic light field decomposition. In addition, we
compare to the network proposed by Shi et al. [31], which
uses a deep autoencoder for intrinsic images. However, it
only works for standard 2D images. To compare to the
full decomposition [2], where the authors decompose the
input light field into albedo, shading and specularity, we
compute the diffuse component by multiplying albedo and



Center View Ground Truth Ours ACC [17] EPI1 [19] EPI2 [42]

MSE ×100: 5.9 23.1 30.0 35.5

MSE ×100: 4.6 13.4 14.7 17.3
Figure 7. We compare our results for disparity on challenging synthetic scenes that feature strong specularities and regions of little texture
against state of the art methods for depth estimation. Epecially in regions where the specularity dominates the texture, the other EPI based
methods fail, while ACC due to its strong regularization can still yield pleasing (albeit oversmoothed) results. With respect to MSE, our
approach outperforms the other methods significantly.

LMSE ×100 GMSE ×100 SSIM ×100
diff. spec. diff. spec. diff. spec.

Ours 0.15 0.11 0.28 0.23 80.08 81.37
Alperovich [2] 0.12 0.45 0.22 1.04 74.98 48.46
Sulc et al. [34] 0.12 0.47 0.24 1.01 75.43 47.25
Shi et al. [31] 0.34 0.15 0.5 0.39 63.02 73.71

Figure 8. Comparison of different error metrics for specular and
diffuse components. Numbers show the average over nine previ-
ously unseen test datasets. See section 5 for a description of the
metrics. Since Shi et al. [31] does not perform decomposition
for the background, we multiply all results and ground truth with
object mask before measuring the errors.

LMSE ×100 GMSE ×100 SSIM ×100 MSE (depth) ×100
diff. spec. diff. spec. diff. spec. scene 1 scene 2

Original 0.25 0.19 0.64 0.62 66.66 72.75 5.9 4.6
48 x 48 0.33 0.33 0.74 0.73 56.67 59.07 192.7 167.9

9 x 24 x 24 0.28 0.35 0.69 0.85 57.72 62.87 55.87 19.31

Figure 9. Ablation study: Quantitative comparison of separation
over nine previously unseen test datasets, and depth estimation for
the two scenes from Figure 7. Note that we compute error for the
whole center view, without object mask.

shading [7].
For quantitative results, we evaluate reflection separation

on synthetic scenes and report the local mean-squared er-
ror (LMSE) [7] which we compute patch-wise. This er-
ror is scale invariant, since the brightness of the patches is
adjusted to the ground truth. In our experiments, we use
rectangular overlapping patches with a size of 20% of the
total image size. To evaluate the errors that might me can-
celed by LMSE, we also compute global mean squared er-
ror (GMSE) that adjusts the brightness value for the whole

image. We also measure the structural similarity index
(SSIM). See Figure 8 for an overview of all numerical re-
sults, and Figures 10 and 11 for a visual comparison. We
also compare performance of disparity map estimation for
specular scenes to different other algorithms in Figure 7.
As an ablation study, we performed two experiments. In the
first case we trained network only for center view without
any disparity information from sub-aperture views, in the
second case we have reduced spatial patch size to 24 × 24.
Both experiments lead to decrease in performance com-
pared to the original network, see Figure 9 for the compar-
isons on the same data sets that are used in Figures 10, 8, 7 .
Finally, results of our method on different datasets that are
commonly used in the light field community [39, 43, 16]
can be found in Figure 12. We refer to the supplementary
material for more results for the real and synthetic scenes,
and videos for diffuse and specular components that show
angular consistency of the decomposition.

6. Conclusion
In this work, we propose a generative encoder-decoder

architecture for patches taken from light field epipolar vol-
umes. Using different decoder paths, we can achieve both
intrinsic decomposition as well as disparity estimation with
a unified network. Thanks to joint training of autoencoder
and the supervised pathways, we can transform the input
light field into a latent representation which is both much
smaller and well adapted to the desired tasks.

Our method outperforms recent light field based meth-
ods [34, 2], and a single image deep network approach for
intrinsic image decomposition [31]. Although we have only
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Figure 10. Comparison for a synthetic data set with two non-Lambertian objects with almost no texture, which is typically challenging for
reflection separation. Both modeling approaches [2] and [34] fail to separate the specular component from the diffuse one. The CNN-
based approach [31] successfully separates reflection components, but the diffuse one has some artifacts. In addition, the method requires
an object mask, thus its application is limited to objects well separated from the background, which are rarely found in real world scenes.
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di
ff

us
e

our disparity map

sp
ec

ul
ar

center view

di
ff

us
e

our disparity map

sp
ec

ul
ar

Figure 11. Two light fields captured with the Lytro Illum plenoptic camera. The first scene consist of a highly specular saxophone and an
almost Lambertian koala. Our network successfully detects more specular parts of the saxophone compared to the other methods. While
we mis-detect the koala as a specular object similar to [31], our method is the only one where the diffuse part behind the large specular
spot on saxophone is not blurred. The second scene has two objects with very small saturated specularity, and only our method is the only
one able to separate it. For all other methods, the specularity is still present in the diffuse component. Note that the single image CNN [31]
does not perform decomposition for the background, thus it appears black in the visualization.
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center view disparity diffuse specular

Figure 12. Results on unseen light fields from various sources. We show center views of the light fields with diffuse and specular com-
ponents and estimated disparities. Top: lightfield from the Stanford data set [39], where we have chosen the most challenging case with
respect to reflection separation and disparity estimation. Our network, while being trained on synthetic scenes, is able to generalize to
real world examples with complicated geometry and reflection. Middle: synthetic scene from light field benchmark [16], where we have
selected an object with small specular regions, to evaluate how the network will cope with it. Specularity is successfully from the diffuse
part, while preserving texture. Bottom: an example data set from HCI benchmark [43].

average performance in depth reconstruction on datasets
from the benchmark [16], in contrast to other methods, we
still recover reliable depth in the presence of strong spec-
ularity. We also generalize well to real-world light fields
captured with the Lytro Illum plenoptic camera or a gantry,
although we do not have ground truth training data available
for these. Despite being trained only on soft reflections, ex-
periments with highly specular light fields show that we are
robust against strong non-Lambertian effects. As the struc-
tures in epipolar volumes are both relatively characteristic
and contain more information, we require only relatively
few training examples (around 200 light fields), compared

to single image approaches which use several millions of
images.
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